BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 6458301)

  • 1. Red cell phosphofructokinase and pyruvate kinase activities correlate with genetic variation of 2, 3-bisphosphoglycerate in rats.
    Gilman JG
    Biochem Biophys Res Commun; 1981 Sep; 102(2):766-74. PubMed ID: 6458301
    [No Abstract]   [Full Text] [Related]  

  • 2. Red cells of newborn rats have low bisphosphoglyceromutase and high pyruvate kinase activities in association with low 2,3-bisphosphoglycerate.
    Gilman JG
    Biochem Biophys Res Commun; 1981 Feb; 98(4):1057-62. PubMed ID: 6261755
    [No Abstract]   [Full Text] [Related]  

  • 3. 2,3-Bisphosphoglycerate, fructose, 2,6-bisphosphate and glucose 1,6-bisphosphate during maturation of reticulocytes with low 2,3-bisphosphoglycerate content.
    Gallego C; Carreras J
    Mol Cell Biochem; 1990 Dec; 99(1):21-4. PubMed ID: 2177836
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Enzyme activities related to 2,3-P2-glycerate metabolism in embryonic and fetal red cells.
    Jelkmann W; Bauer C
    Biochem Biophys Res Commun; 1980 Mar; 93(1):93-9. PubMed ID: 6246903
    [No Abstract]   [Full Text] [Related]  

  • 5. Thermal inactivation differences of phosphofructokinase in erythrocytes from genetically selected high and low DPG rat strains.
    Chassin SL; Kruckeberg WC; Brewer GJ
    Biochem Biophys Res Commun; 1978 Aug; 83(4):1306-11. PubMed ID: 151544
    [No Abstract]   [Full Text] [Related]  

  • 6. Erythrocyte isozymes of phosphofructokinase in genetically high- and low-2,3-diphosphoglycerate rats.
    Noble NA; Kuwashima LH; Togioka TT; Tanaka KR
    Biochem Genet; 1982 Dec; 20(11-12):1055-65. PubMed ID: 6219662
    [TBL] [Abstract][Full Text] [Related]  

  • 7. In vivo red cell glycolytic control and DPG-ATP levels.
    Brewer GJ; Oelshlegel FJ; Moore LG; Noble NA
    Ann N Y Acad Sci; 1974 Nov; 241(0):513-23. PubMed ID: 4279579
    [No Abstract]   [Full Text] [Related]  

  • 8. The effect of Anaplasma marginale on the glycolytic pathway in bovine erythrocytes.
    Mandelblum F; Ysern-Caldentey M
    Comp Biochem Physiol B; 1984; 78(4):851-4. PubMed ID: 6236033
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Kinetic properties of mutant enzymes in erythrocyte phosphofructokinase deficiency and erythrocyte pyruvate kinase deficiency.
    Shimizu T; Kuwajima M; Kono N; Mineo I; Sumi S; Yonezawa T; Nonaka K; Tarui S
    Med J Osaka Univ; 1983 Mar; 33(3-4):49-58. PubMed ID: 6225942
    [No Abstract]   [Full Text] [Related]  

  • 10. [Activity of enzymes of glycolysis in pig erythrocytes in the neonatal period].
    Snïtyns'kyĭ VV; Antoniak HL; Bershads'kyĭ VI
    Ukr Biokhim Zh (1978); 1994; 66(5):31-5. PubMed ID: 7747343
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The Dpg gene: an intracorpuscular modifier of red cell metabolism.
    Noble NA; Rothstein G
    Blood; 1986 May; 67(5):1210-4. PubMed ID: 2938646
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The effect of 2,3-DPG on red cell enzymes.
    Beutler E; Matsumoto F; Guinto E
    Experientia; 1974 Feb; 30(2):191-2. PubMed ID: 4273561
    [No Abstract]   [Full Text] [Related]  

  • 13. The influence of adrenaline on the metabolism of erythrocytes in vitro.
    Mairbäurl H; Humpeler E
    Biochem Soc Trans; 1981 Feb; 9(1):99-100. PubMed ID: 6260559
    [No Abstract]   [Full Text] [Related]  

  • 14. [Mutual regulation between erythrocyte 2,3 diphosphoglycerate (DPG) and phosphofructokinase: observations on enzyme deficient red cells].
    Tarui S; Ichihara K; Kono N
    Nihon Rinsho; 1973 Aug; 31(8):2429-34. PubMed ID: 4271914
    [No Abstract]   [Full Text] [Related]  

  • 15. Fructose 2,6-bisphosphate and glucose 1,6-bisphosphate levels in erythrocytes with high and low 2,3-bisphosphoglycerate content during postnatal development.
    Gallego C; Carreras J
    FEBS Lett; 1989 Jul; 251(1-2):74-8. PubMed ID: 2753166
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Erythrocyte metabolism in the yellow perch (Perca flavescens Mitchill)--II. Intermediates, nucleotides and free energy changes in glycolytic reactions.
    Leray C; Bachand L
    Comp Biochem Physiol B; 1975 Jul; 51(3):349-53. PubMed ID: 124645
    [No Abstract]   [Full Text] [Related]  

  • 17. Pyruvate kinase and the "high ATP syndrome".
    Staal GE; Jansen G; Roos D
    J Clin Invest; 1984 Jul; 74(1):231-5. PubMed ID: 6736249
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Glycolytic enzyme activity and levels of glycolysis metabolites in erythrocytes in physiological pregnancy].
    D'iakova NG; Chernyshov VG
    Vopr Med Khim; 1985; 31(2):17-20. PubMed ID: 4002652
    [TBL] [Abstract][Full Text] [Related]  

  • 19. In vitro influences of adrenaline on erythrocyte metabolism and on oxygen affinity of hemoglobin.
    Mairbäurl H; Humpeler E
    Prog Clin Biol Res; 1981; 55():311-22. PubMed ID: 6270694
    [No Abstract]   [Full Text] [Related]  

  • 20. Mathematical analysis of multienzyme systems. I. Modelling of the glycolysis of human erythrocytes.
    Rapoport TA; Heinrich R
    Biosystems; 1975 Jul; 7(1):120-9. PubMed ID: 168932
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.