These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
193 related articles for article (PubMed ID: 6458310)
21. Vector control without chemicals: has it a future? Eldridge BF J Am Mosq Control Assoc; 1995 Jun; 11(2 Pt 2):247-8. PubMed ID: 7595455 [No Abstract] [Full Text] [Related]
22. Microbial control and biotechnology research on Bacillus thuringiensis in China. Huang DF; Zhang J; Song FP; Lang ZH J Invertebr Pathol; 2007 Jul; 95(3):175-80. PubMed ID: 17481651 [TBL] [Abstract][Full Text] [Related]
24. [Chemical and biological control of vectors]. Coluzzi M Parassitologia; 1977 Dec; 19(3):169-73. PubMed ID: 754141 [No Abstract] [Full Text] [Related]
25. [Insect infestation of Budapest and insect control]. Herczeg T; Vámos G; Gaál F; Salfay G Wiad Parazytol; 1977; 23(1-3):167-70. PubMed ID: 898983 [No Abstract] [Full Text] [Related]
26. The influence of nematodes and parasitic fungi on host insects. Kamionek M Wiad Parazytol; 1976; 22(4-5):369-77. PubMed ID: 1014665 [No Abstract] [Full Text] [Related]
28. The Innovative Vector Control Consortium: improved control of mosquito-borne diseases. Hemingway J; Beaty BJ; Rowland M; Scott TW; Sharp BL Trends Parasitol; 2006 Jul; 22(7):308-12. PubMed ID: 16713358 [TBL] [Abstract][Full Text] [Related]
29. Activity of Bacillus thuringiensis delta-endotoxins against codling moth (Cydia pomonella L.) larvae. Boncheva R; Dukiandjiev S; Minkov I; de Maagd RA; Naimov S J Invertebr Pathol; 2006 Jun; 92(2):96-9. PubMed ID: 16530218 [TBL] [Abstract][Full Text] [Related]
30. In focus: IPM using novel insecticides and other approaches. Ishaaya I; Horowitz AR Pest Manag Sci; 2007 Aug; 63(8):729. PubMed ID: 17607659 [No Abstract] [Full Text] [Related]
32. Biocontrol in veterinary entomology. Laird M Adv Vet Sci Comp Med; 1980; 24():145-77. PubMed ID: 7006339 [No Abstract] [Full Text] [Related]
33. Alternatives to the use of organochlorine compounds for insect control. Hoffmann CH J Dairy Sci; 1971 May; 54(5):719-32. PubMed ID: 5568338 [No Abstract] [Full Text] [Related]
34. Laboratory evaluation of Bacillus thuringiensis H-14 against Aedes aegypti. Lee YW; Zairi J Trop Biomed; 2005 Jun; 22(1):5-10. PubMed ID: 16880748 [TBL] [Abstract][Full Text] [Related]
35. Environmental factors internal to the host that affect the sucess of microbial insecticides. Harshbarger JC; Faust RM Ann N Y Acad Sci; 1973 Jun; 217():131-40. PubMed ID: 4198128 [No Abstract] [Full Text] [Related]
37. Control of tsetse flies, Glossina spp. Dame DA; Jordan AM Adv Vet Sci Comp Med; 1981; 25():101-19. PubMed ID: 7034497 [No Abstract] [Full Text] [Related]
38. Large river treatment with Bacillus thuringiensis (H-14) for the control of Simulium damnosum s.l. in the Onchocerciasis Control Programme. Lacey LA; Escaffre H; Philippon B; Sékétéli A; Guillet P Tropenmed Parasitol; 1982 Jun; 33(2):97-101. PubMed ID: 7112688 [TBL] [Abstract][Full Text] [Related]
39. Use of stream width for determining the dosage rates of Bacillus thuringiensis var. israelensis for larval black fly (Diptera: Simuliidae) control. Undeen AH; Molloy DP J Am Mosq Control Assoc; 1996 Jun; 12(2 Pt 1):312-5. PubMed ID: 8827611 [TBL] [Abstract][Full Text] [Related]