These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

79 related articles for article (PubMed ID: 6458579)

  • 1. Activities of transport enzymes located in the plasma membranes of corneal endothelial cells.
    Whikehart DR; Soppet DR
    Invest Ophthalmol Vis Sci; 1981 Dec; 21(6):819-25. PubMed ID: 6458579
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Isolation of the plasma membrane from corneal endothelial cells.
    Zam ZS; Cerda J; Polack FM
    Invest Ophthalmol Vis Sci; 1980 Jun; 19(6):648-52. PubMed ID: 6247294
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The absence of bicarbonate-stimulated ATPase activity in the plasma membranes of the bicarbonate secreting ox corneal endothelial cells.
    Hodson S; Hodson G
    Biochim Biophys Acta; 1988 Jan; 937(2):241-6. PubMed ID: 2827769
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The effects of glutathione and adenosine on plasma membrane ATPases of the corneal endothelium. An hypothesis on the stimulatory mechanism of perfused glutathione upon deturgescence.
    Whikehart DR; Soppet DR
    Curr Eye Res; 1981; 1(8):451-5. PubMed ID: 6277570
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The localization of the anion-sensitive ATPase activity in corneal endothelium.
    Riley MV; Peters MI
    Biochim Biophys Acta; 1981 Jun; 644(2):251-6. PubMed ID: 6114746
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Isolation and characterization of plasma membranes from transplantable human astrocytoma, oat cell carcinoma, and melanomas.
    Knowles AF; Leis JF; Kaplan NO
    Cancer Res; 1981 Oct; 41(10):4031-8. PubMed ID: 6116538
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Isolation of plasma membrane domains from bovine corneal endothelial cells.
    Soltau JB; Zhou LX; McLaughlin BJ
    Exp Eye Res; 1993 Jan; 56(1):115-20. PubMed ID: 8381748
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Sodium and potassium saturation kinetics of Na+K+-ATPase in plasma membranes from corneal endothelium: fresh tissue vs. tissue culture.
    Whikehart DR; Montgomery B; Hafer LM
    Curr Eye Res; 1987 May; 6(5):709-17. PubMed ID: 3036420
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Histochemical findings on sodium-potassium activated adenosine triphosphatase (NaK-ATPase) activity in the cornea.
    Tervo T; Palkama A
    Acta Ophthalmol Suppl; 1974; 123():88-93. PubMed ID: 4368773
    [No Abstract]   [Full Text] [Related]  

  • 10. Transport adenosine triphosphatase activity in the rat cornea.
    Tervo T; Palva M; Arto P
    Cell Tissue Res; 1977 Jan; 176(4):431-43. PubMed ID: 64303
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Regulation of corneal endothelial barrier function by adenosine, cyclic AMP, and protein kinases.
    Riley MV; Winkler BS; Starnes CA; Peters MI; Dang L
    Invest Ophthalmol Vis Sci; 1998 Oct; 39(11):2076-84. PubMed ID: 9761286
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An electrogenic chloride pump in a zoological membrane.
    Gerencser GA; Purushotham KR; Meng HB
    J Exp Zool; 1996 Jul; 275(4):256-61. PubMed ID: 8759921
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Immunological and functional localization of both F-type and P-type ATPases in cyanobacterial plasma membranes.
    Neisser A; Fromwald S; Schmatzberger A; Peschek GA
    Biochem Biophys Res Commun; 1994 Apr; 200(2):884-92. PubMed ID: 8179623
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Prospects of the Gomori lead method in the electron microscopic histochemistry of ATPase].
    Raĭkhlin NT; Bukhvalov IB
    Arkh Anat Gistol Embriol; 1973 Dec; 65(12):109-18. PubMed ID: 4132047
    [No Abstract]   [Full Text] [Related]  

  • 15. [Morphologic characteristics and ATPase activity in permeabilized epididymal bull sperm].
    Dietz H; Halangk W; Bohnensack R; Kemnitz P
    Dtsch Tierarztl Wochenschr; 1993 Jun; 100(6):231-4. PubMed ID: 8339708
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Localization of transport adenosine triphosphatase in rat cornea.
    Leuenberger PM; Novikoff AB
    J Cell Biol; 1974 Mar; 60(3):721-31. PubMed ID: 4274728
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Interaction of multidrug resistance reversal agents with P-glycoprotein ATPase activity on blood-brain barrier.
    He L; Liu GQ
    Acta Pharmacol Sin; 2002 May; 23(5):423-9. PubMed ID: 11978192
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Characterization of plasma membrane fraction from filamentous fungus Rhizopus nigricans.
    Lenasi H; Slajpah M; Sterle M; Hudnik-Plevnik T; Breskvar K
    Pflugers Arch; 2000; 439(3 Suppl):R137-8. PubMed ID: 10653169
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Null effect of adenosine on cyclic nucleotides of the corneal endothelium: possible implications for adenosine-stimulated corneal deturgescence.
    Zagrod ME; Whikehart DR
    Curr Eye Res; 1984 Feb; 3(2):293-8. PubMed ID: 6323099
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The inhibition of sodium, potassium-stimulated ATPase and corneal swelling: the role played by polyols.
    Whikehart DR
    J Am Optom Assoc; 1995 Jun; 66(6):331-3. PubMed ID: 7673590
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.