These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
240 related articles for article (PubMed ID: 6458603)
1. Lateral mobility of erythrocyte membrane proteins studied by the fluorescence photobleaching recovery technique. Chang CH; Takeuchi H; Ito T; Machida K; Ohnishi S J Biochem; 1981 Oct; 90(4):997-1004. PubMed ID: 6458603 [TBL] [Abstract][Full Text] [Related]
2. Rotational mobility of an erythrocyte membrane integral protein band 3 in dimyristoylphosphatidylcholine reconstituted vesicles and effect of binding of cytoskeletal peripheral proteins. Sakaki T; Tsuji A; Chang CH; Ohnishi S Biochemistry; 1982 May; 21(10):2366-72. PubMed ID: 6284198 [TBL] [Abstract][Full Text] [Related]
3. Restriction by ankyrin of band 3 rotational mobility in human erythrocyte membranes and reconstituted lipid vesicles. Che A; Morrison IE; Pan R; Cherry RJ Biochemistry; 1997 Aug; 36(31):9588-95. PubMed ID: 9236005 [TBL] [Abstract][Full Text] [Related]
4. Restriction of the lateral motion of band 3 in the erythrocyte membrane by the cytoskeletal network: dependence on spectrin association state. Tsuji A; Ohnishi S Biochemistry; 1986 Oct; 25(20):6133-9. PubMed ID: 3790510 [TBL] [Abstract][Full Text] [Related]
5. [Molecular interactions of membrane proteins and erythrocyte deformability]. Boivin P Pathol Biol (Paris); 1984 Jun; 32(6):717-35. PubMed ID: 6235477 [TBL] [Abstract][Full Text] [Related]
6. Deoxygenation affects fluorescence photobleaching recovery measurements of red cell membrane protein lateral mobility. Corbett JD; Cho MR; Golan DE Biophys J; 1994 Jan; 66(1):25-30. PubMed ID: 8130343 [TBL] [Abstract][Full Text] [Related]
7. Lateral mobility of band 3 in the human erythrocyte membrane studied by fluorescence photobleaching recovery: evidence for control by cytoskeletal interactions. Golan DE; Veatch W Proc Natl Acad Sci U S A; 1980 May; 77(5):2537-41. PubMed ID: 6930650 [TBL] [Abstract][Full Text] [Related]
8. Matrix control of protein diffusion in biological membranes. Koppel DE; Sheetz MP; Schindler M Proc Natl Acad Sci U S A; 1981 Jun; 78(6):3576-80. PubMed ID: 6943558 [TBL] [Abstract][Full Text] [Related]
9. Alteration of the erythrocyte membrane via enzymatic degradation of ankyrin (band 2.1): subcellular surgery characterized by EPR spectroscopy. Hensley K; Postlewaite J; Dobbs P; Butterfield DA Biochim Biophys Acta; 1993 Feb; 1145(2):205-11. PubMed ID: 8381664 [TBL] [Abstract][Full Text] [Related]
10. The molecular basis for membrane - cytoskeleton association in human erythrocytes. Bennett V J Cell Biochem; 1982; 18(1):49-65. PubMed ID: 6461664 [TBL] [Abstract][Full Text] [Related]
11. Both ankyrin and band 4.1 are required to restrict the rotational mobility of band 3 in the human erythrocyte membrane. Wyatt K; Cherry RJ Biochim Biophys Acta; 1992 Jan; 1103(2):327-30. PubMed ID: 1531931 [TBL] [Abstract][Full Text] [Related]
12. Interactions between membrane skeleton proteins and the intrinsic domain of the erythrocyte membrane. Haest CW Biochim Biophys Acta; 1982 Dec; 694(4):331-52. PubMed ID: 6218824 [No Abstract] [Full Text] [Related]
13. A dynamical study on the interactions between the cytoskeleton components in the human erythrocyte as detected by saturation transfer electron paramagnetic resonance of spin-labeled spectrin, ankyrin, and protein 4.1. Dubreuil YL; Cassoly R Arch Biochem Biophys; 1983 Jun; 223(2):495-502. PubMed ID: 6305282 [TBL] [Abstract][Full Text] [Related]
14. Reversible binding kinetics of a cytoskeletal protein at the erythrocyte submembrane. Stout AL; Axelrod D Biophys J; 1994 Sep; 67(3):1324-34. PubMed ID: 7811947 [TBL] [Abstract][Full Text] [Related]
15. Control of band 3 lateral and rotational mobility by band 4.2 in intact erythrocytes: release of band 3 oligomers from low-affinity binding sites. Golan DE; Corbett JD; Korsgren C; Thatte HS; Hayette S; Yawata Y; Cohen CM Biophys J; 1996 Mar; 70(3):1534-42. PubMed ID: 8785311 [TBL] [Abstract][Full Text] [Related]
16. Proteolysis of ankyrin and of band 3 protein in chemically induced cell fusion. Ca2+ is not mandatory for fusion. Lang RD; Wickenden C; Wynne J; Lucy JA Biochem J; 1984 Mar; 218(2):295-305. PubMed ID: 6231922 [TBL] [Abstract][Full Text] [Related]
17. Structural organisation of band 3 in Melanesian ovalocytes. Tilley L; McPherson RA; Jones GL; Sawyer WH Biochim Biophys Acta; 1993 Mar; 1181(1):83-9. PubMed ID: 8457610 [TBL] [Abstract][Full Text] [Related]
18. Bilayer/cytoskeleton interactions in lipid-symmetric erythrocytes assessed by a photoactivable phospholipid analogue. Pradhan D; Williamson P; Schlegel RA Biochemistry; 1991 Aug; 30(31):7754-8. PubMed ID: 1868052 [TBL] [Abstract][Full Text] [Related]
19. Architecture of the human erythrocyte ankyrin-1 complex. Vallese F; Kim K; Yen LY; Johnston JD; Noble AJ; Calì T; Clarke OB Nat Struct Mol Biol; 2022 Jul; 29(7):706-718. PubMed ID: 35835865 [TBL] [Abstract][Full Text] [Related]
20. Differential control of band 3 lateral and rotational mobility in intact red cells. Corbett JD; Agre P; Palek J; Golan DE J Clin Invest; 1994 Aug; 94(2):683-8. PubMed ID: 8040322 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]