These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

68 related articles for article (PubMed ID: 6458816)

  • 21. Sucrose synthase of soybean nodules.
    Morell M; Copeland L
    Plant Physiol; 1985 May; 78(1):149-54. PubMed ID: 16664189
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Formation and properties of mixed disulfides between thioredoxin reductase from Escherichia coli and thioredoxin: evidence that cysteine-138 functions to initiate dithiol-disulfide interchange and to accept the reducing equivalent from reduced flavin.
    Veine DM; Mulrooney SB; Wang PF; Williams CH
    Protein Sci; 1998 Jun; 7(6):1441-50. PubMed ID: 9655349
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A membrane-associated form of sucrose synthase and its potential role in synthesis of cellulose and callose in plants.
    Amor Y; Haigler CH; Johnson S; Wainscott M; Delmer DP
    Proc Natl Acad Sci U S A; 1995 Sep; 92(20):9353-7. PubMed ID: 7568131
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Redox active disulfides: the thioredoxin system as a drug target.
    Kirkpatrick DL; Ehrmantraut G; Stettner S; Kunkel M; Powis G
    Oncol Res; 1997; 9(6-7):351-6. PubMed ID: 9406241
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The relationship of the redox potentials of thioredoxin and thioredoxin reductase from Drosophila melanogaster to the enzymatic mechanism: reduced thioredoxin is the reductant of glutathione in Drosophila.
    Cheng Z; Arscott LD; Ballou DP; Williams CH
    Biochemistry; 2007 Jul; 46(26):7875-85. PubMed ID: 17550271
    [TBL] [Abstract][Full Text] [Related]  

  • 26. S-glutathiolated hepatocyte proteins and insulin disulfides as substrates for reduction by glutaredoxin, thioredoxin, protein disulfide isomerase, and glutathione.
    Jung CH; Thomas JA
    Arch Biochem Biophys; 1996 Nov; 335(1):61-72. PubMed ID: 8914835
    [TBL] [Abstract][Full Text] [Related]  

  • 27. delta-Aminolevulinate dehydratase inhibition by ascorbic acid is mediated by an oxidation system existing in the hepatic supernatant.
    Beber FA; Wollmeister J; Brigo MJ; Silva MC; Pereira CN; Rocha JB
    Int J Vitam Nutr Res; 1998; 68(3):181-8. PubMed ID: 9637949
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Synthesis of asymmetrically labeled sucrose by a recombinant sucrose synthase.
    Nakai T; Tonouchi N; Tsuchida T; Mori H; Sakai F; Hayashi T
    Biosci Biotechnol Biochem; 1997 Nov; 61(11):1955-6. PubMed ID: 9404082
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Sequence determinants of nucleotide binding in Sucrose Synthase: improving the affinity of a bacterial Sucrose Synthase for UDP by introducing plant residues.
    Diricks M; Gutmann A; Debacker S; Dewitte G; Nidetzky B; Desmet T
    Protein Eng Des Sel; 2017 Mar; 30(3):141-148. PubMed ID: 27590052
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Redox control of caspase-3 activity by thioredoxin and other reduced proteins.
    Baker A; Santos BD; Powis G
    Biochem Biophys Res Commun; 2000 Feb; 268(1):78-81. PubMed ID: 10652216
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Influence of gamma-irradiation on UDPglucose-fructose glucosyltransferase in potato tubers.
    Jaarma M
    Acta Chem Scand; 1966; 20(2):594-6. PubMed ID: 5941315
    [No Abstract]   [Full Text] [Related]  

  • 32. Catalytic and chemical competence of regulation of cdc25 phosphatase by oxidation/reduction.
    Sohn J; Rudolph J
    Biochemistry; 2003 Sep; 42(34):10060-70. PubMed ID: 12939134
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Differential oxidation of thioredoxin-1, thioredoxin-2, and glutathione by metal ions.
    Hansen JM; Zhang H; Jones DP
    Free Radic Biol Med; 2006 Jan; 40(1):138-45. PubMed ID: 16337887
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Sucrose synthase: A unique glycosyltransferase for biocatalytic glycosylation process development.
    Schmölzer K; Gutmann A; Diricks M; Desmet T; Nidetzky B
    Biotechnol Adv; 2016; 34(2):88-111. PubMed ID: 26657050
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Disulfide bond formation in the Escherichia coli cytoplasm: an in vivo role reversal for the thioredoxins.
    Stewart EJ; Aslund F; Beckwith J
    EMBO J; 1998 Oct; 17(19):5543-50. PubMed ID: 9755155
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Phosphorylation of rice sucrose synthase isoforms promotes the activity of sucrose degradation.
    Takeda H; Niikura M; Narumi A; Aoki H; Sasaki T; Shimada H
    Plant Biotechnol (Tokyo); 2017; 34(2):107-113. PubMed ID: 31275015
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Studies on sucrose phosphate synthetase. The inhibitory action of sucrose.
    Salerno GL; Pontis HG
    FEBS Lett; 1978 Feb; 86(2):263-7. PubMed ID: 624409
    [No Abstract]   [Full Text] [Related]  

  • 38. Interallelic Complementation at the sh Locus in Maize at the Enzyme Level.
    Chourey PS; Nelson OE
    Genetics; 1979 Feb; 91(2):317-25. PubMed ID: 17248886
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Mixed disulfide formation at Cys141 leads to apparent unidirectional attenuation of Aspergillus niger NADP-glutamate dehydrogenase activity.
    Walvekar AS; Choudhury R; Punekar NS
    PLoS One; 2014; 9(7):e101662. PubMed ID: 24987966
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Sucrose synthase in unicellular cyanobacteria and its relationship with salt and hypoxic stress.
    Kolman MA; Torres LL; Martin ML; Salerno GL
    Planta; 2012 May; 235(5):955-64. PubMed ID: 22113826
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 4.