These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
131 related articles for article (PubMed ID: 6459083)
1. MgATP-induced inhibition of the adenosine triphosphatase activity of the chloroform-released mitochondrial adenosine triphosphatase. Lowe PN; Beechey RB Biochem J; 1981 May; 196(2):433-42. PubMed ID: 6459083 [TBL] [Abstract][Full Text] [Related]
2. MgATP-induced inhibition of the adenosine triphosphatase activity of submitochondrial particles. Lowe PN; Beechey RB Biochem J; 1981 May; 196(2):443-9. PubMed ID: 6459084 [TBL] [Abstract][Full Text] [Related]
3. Involvement of the endogenous inhibitor protein in the MgATP-induced inhibition of soluble mitochondrial adenosine triphosphatase activity. Lowe PN; Beechey RB Biochem J; 1981 Dec; 200(3):655-61. PubMed ID: 6211169 [TBL] [Abstract][Full Text] [Related]
4. MgATP-induced inhibition of the enzymic activity of chloroform-released ox-heart mitochondrial ATPase. Lowe PN; Linnett PE; Baum H; Beechey RB Biochem Biophys Res Commun; 1979 Nov; 91(2):599-605. PubMed ID: 160228 [No Abstract] [Full Text] [Related]
5. Interactions between the mitochondrial adenosinetriphosphatase and periodate-oxidized adenosine 5'-triphosphate, an affinity label for adenosine 5'-triphosphate binding sites. Lowe PN; Beechey RB Biochemistry; 1982 Aug; 21(17):4073-82. PubMed ID: 6215060 [TBL] [Abstract][Full Text] [Related]
6. Adenine nucleotides regulate the functional transition in mitochondrial H+-ATPase and the kinetic behaviour of its ATP-synthetase form. Bronnikov GE; Samoylova EV Biochem Int; 1987 May; 14(5):859-69. PubMed ID: 2900638 [TBL] [Abstract][Full Text] [Related]
7. Kinetics of interaction of adenosine diphosphate and adenosine triphosphate with adenosine triphosphatase of bovine heart submitochondrial particles. Vasilyeva EA; Fitin AF; Minkov IB; Vinogradov AD Biochem J; 1980 Jun; 188(3):807-15. PubMed ID: 6451217 [TBL] [Abstract][Full Text] [Related]
8. Kinetic mechanism of mitochondrial adenosine triphosphatase. ADP-specific inhibition as revealed by the steady-state kinetics. Vasilyeva EA; Minkov IB; Fitin AF; Vinogradov AD Biochem J; 1982 Jan; 202(1):9-14. PubMed ID: 6211173 [TBL] [Abstract][Full Text] [Related]
9. ATPase of bovine heart mitochondria. Modulation of ITPase activity by ATP, ADP, acetyl ATP and acetyl AMP. Thomassen J; Klungsøyr L Biochim Biophys Acta; 1983 Apr; 723(1):114-22. PubMed ID: 6131689 [TBL] [Abstract][Full Text] [Related]
10. Kinetic mechanism of mitochondrial adenosine triphosphatase. Inhibition by azide and activation by sulphite. Vasilyeva EA; Minkov IB; Fitin AF; Vinogradov AD Biochem J; 1982 Jan; 202(1):15-23. PubMed ID: 6211171 [TBL] [Abstract][Full Text] [Related]
11. Pre-steady-state kinetics of beef heart mitochondrial ATPase. Clark DD; Daggett SG; Schuster SM Arch Biochem Biophys; 1984 Sep; 233(2):378-92. PubMed ID: 6237608 [TBL] [Abstract][Full Text] [Related]
12. Inhibition of the plasma membrane [H+]-ATPase of Neurospora crassa by N-ethylmaleimide. Protection by nucleotides. Brooker RJ; Slayman CW J Biol Chem; 1982 Oct; 257(20):12051-5. PubMed ID: 6214555 [TBL] [Abstract][Full Text] [Related]
13. Role of phosphate on the ADP-induced hysteretic inhibition of mitochondrial adenosine 5'-triphosphatase. Effects of the natural protein inhibitor. Di Pietro A; Fellous G; Godinot C; Gautheron DC Biochim Biophys Acta; 1986 Sep; 851(2):283-94. PubMed ID: 2874830 [TBL] [Abstract][Full Text] [Related]
14. Mechanism of ATP hydrolysis by beef heart mitochondrial ATPase. Rate constants for elementary steps in catalysis at a single site. Grubmeyer C; Cross RL; Penefsky HS J Biol Chem; 1982 Oct; 257(20):12092-100. PubMed ID: 6214557 [No Abstract] [Full Text] [Related]
15. Catalysis of partial reactions of ATP synthesis by beef heart mitochondrial adenosine triphosphatase. Bossard MJ; Schuster SM J Biol Chem; 1981 Feb; 256(4):1518-21. PubMed ID: 6450758 [TBL] [Abstract][Full Text] [Related]
16. [Reasons causing a lag period in the oxidative phosphorylation process. Isn't ATP an internal uncoupler of ATP synthetase?]. Bronnikov GE; Vinogradova SO; Mezentseva VS; Samoĭlova EV Biofizika; 1999; 44(3):465-73. PubMed ID: 10439862 [TBL] [Abstract][Full Text] [Related]
17. The pre-steady state and steady-state kinetics of the ATPase activity of mitochondrial F1. Roveri OA; Muller JL; Wilms J; Slater EC Biochim Biophys Acta; 1980 Feb; 589(2):241-55. PubMed ID: 6444524 [TBL] [Abstract][Full Text] [Related]
18. A kinetic study of the interaction between mitochondrial F1 adenosine triphosphatase and adenylyl imidodiphosphate and guanylyl imidodiphosphate. Belda FJ; Carmona FG; Cánovas FG; Gómez-Fernández JC; Lozano JA Biochem J; 1983 Mar; 210(3):727-35. PubMed ID: 6223627 [TBL] [Abstract][Full Text] [Related]
19. A thermodynamic analysis of the interaction between the mitochondrial coupling adenosine triphosphatase and its naturally occurring inhibitor protein. Gomez-Fernandez JC; Harris DA Biochem J; 1978 Dec; 176(3):967-75. PubMed ID: 154888 [TBL] [Abstract][Full Text] [Related]
20. Drug binding and nucleotide hydrolyzability are essential requirements in the vanadate-induced inhibition of the human P-glycoprotein ATPase. Rao US Biochemistry; 1998 Oct; 37(42):14981-8. PubMed ID: 9778376 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]