These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
178 related articles for article (PubMed ID: 6459084)
1. MgATP-induced inhibition of the adenosine triphosphatase activity of submitochondrial particles. Lowe PN; Beechey RB Biochem J; 1981 May; 196(2):443-9. PubMed ID: 6459084 [TBL] [Abstract][Full Text] [Related]
2. MgATP-induced inhibition of the adenosine triphosphatase activity of the chloroform-released mitochondrial adenosine triphosphatase. Lowe PN; Beechey RB Biochem J; 1981 May; 196(2):433-42. PubMed ID: 6459083 [TBL] [Abstract][Full Text] [Related]
3. Interaction of F1-ATPase, from ox heart mitochondria with its naturally occurring inhibitor protein. Studies using radio-iodinated inhibitor protein. Power J; Cross RL; Harris DA Biochim Biophys Acta; 1983 Jul; 724(1):128-41. PubMed ID: 6223660 [TBL] [Abstract][Full Text] [Related]
4. Activation of a complex of ATPase with the natural protein inhibitor in submitochondrial particles. Khodjaev EYu ; Komarnitsky FB; Capozza G; Dukhovich VF; Chernyak BV; Papa S FEBS Lett; 1990 Oct; 272(1-2):145-8. PubMed ID: 2146159 [TBL] [Abstract][Full Text] [Related]
5. Involvement of the endogenous inhibitor protein in the MgATP-induced inhibition of soluble mitochondrial adenosine triphosphatase activity. Lowe PN; Beechey RB Biochem J; 1981 Dec; 200(3):655-61. PubMed ID: 6211169 [TBL] [Abstract][Full Text] [Related]
6. Kinetic mechanism of mitochondrial adenosine triphosphatase. Inhibition by azide and activation by sulphite. Vasilyeva EA; Minkov IB; Fitin AF; Vinogradov AD Biochem J; 1982 Jan; 202(1):15-23. PubMed ID: 6211171 [TBL] [Abstract][Full Text] [Related]
7. Spermine binding to submitochondrial particles and activation of adenosine triphosphatase. Solaini G; Tadolini B Biochem J; 1984 Mar; 218(2):495-9. PubMed ID: 6231925 [TBL] [Abstract][Full Text] [Related]
8. Kinetics of interaction of adenosine diphosphate and adenosine triphosphate with adenosine triphosphatase of bovine heart submitochondrial particles. Vasilyeva EA; Fitin AF; Minkov IB; Vinogradov AD Biochem J; 1980 Jun; 188(3):807-15. PubMed ID: 6451217 [TBL] [Abstract][Full Text] [Related]
9. A contribution of the mitochondrial adenosinetriphosphatase inhibitor protein to the thermal stability of the F0F1-ATPase complex. Saad-Nehme J; Bezerra AL; Fornells LA; Silva JL; Meyer-Fernandes JR Z Naturforsch C J Biosci; 1997; 52(7-8):459-65. PubMed ID: 9309877 [TBL] [Abstract][Full Text] [Related]
10. [Direct electric measurement of the functioning of adenosine triphosphatase of submitochondrial particles of beef heart]. Pfister C; Pougeois R C R Acad Hebd Seances Acad Sci D; 1978 Sep; 287(4):341-3. PubMed ID: 152675 [TBL] [Abstract][Full Text] [Related]
11. [Effect of the membrane potential on the rate of ATP hydrolysis in submitochondrial particles]. Gladysheva TB; Kozlov IA; Khodzhaev EIu; Cherniak BV Dokl Akad Nauk SSSR; 1984; 276(4):980-3. PubMed ID: 6236064 [No Abstract] [Full Text] [Related]
12. Pre-steady-state studies of the adenosine triphosphatase activity of coupled submitochondrial particles. Regulation by ADP. Martins OB; Tuena de Gómez-Puyou M; Gómez-Puyou A Biochemistry; 1988 Sep; 27(19):7552-8. PubMed ID: 2974725 [TBL] [Abstract][Full Text] [Related]
13. Kinetic mechanism of mitochondrial adenosine triphosphatase. ADP-specific inhibition as revealed by the steady-state kinetics. Vasilyeva EA; Minkov IB; Fitin AF; Vinogradov AD Biochem J; 1982 Jan; 202(1):9-14. PubMed ID: 6211173 [TBL] [Abstract][Full Text] [Related]
14. Differential inhibition of F0F1-ATPase-catalysed reactions in bovine-heart submitochondrial particles by organotin compounds. Emanuel EL; Carver MA; Solani GC; Griffiths DE Biochim Biophys Acta; 1984 Jul; 766(1):209-14. PubMed ID: 6204688 [TBL] [Abstract][Full Text] [Related]
15. [Esterase activity of the mitochondria oligomycin-sensitive ATPase complex]. Iaguzhinskiĭ LS; Gudz' TI; Verkhovskiĭ AB Biokhimiia; 1978 Nov; 43(11):2058-63. PubMed ID: 153769 [TBL] [Abstract][Full Text] [Related]
16. Release of the inhibitory action of the natural ATPase inhibitor protein on the mitochondrial ATPase. Beltrán C; de Gómez-Puyou MT; Gómez-Puyou A; Darszon A Eur J Biochem; 1984 Oct; 144(1):151-7. PubMed ID: 6236977 [TBL] [Abstract][Full Text] [Related]
17. Pressure effects on the interaction between natural inhibitor protein and mitochondrial F1-ATPase. Fornells LA; Guimarães-Motta H; Nehme JS; Martins OB; Silva JL Arch Biochem Biophys; 1998 Jan; 349(2):304-12. PubMed ID: 9448719 [TBL] [Abstract][Full Text] [Related]
18. Inactive to active transitions of the mitochondrial ATPase complex as controlled by the ATPase inhibitor. Gómez-Puyou A; de Gómez-Puyou MT; Ernster L Biochim Biophys Acta; 1979 Aug; 547(2):252-7. PubMed ID: 157162 [TBL] [Abstract][Full Text] [Related]
19. Effect of denaturants on multisite and unisite ATP hydrolysis by bovine heart submitochondrial particles with and without inhibitor protein. de Gómez-Puyou MT; Domínguez-Ramírez L; Pérez-Hernández G; Gómez-Puyou A Arch Biochem Biophys; 2005 Jul; 439(1):129-37. PubMed ID: 15950171 [TBL] [Abstract][Full Text] [Related]
20. Regulation of the synthesis and hydrolysis of ATP by mitochondrial ATPase. Role of the natural ATPase inhibitor protein. Tuena de Gómez-Puyou MT; Muller U; Dreyfus G; Ayala G; Gómez-Puyou A J Biol Chem; 1983 Nov; 258(22):13680-4. PubMed ID: 6227615 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]