These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

174 related articles for article (PubMed ID: 6459151)

  • 1. Evidence for pattern generator control of the effects of spindle afferent input during rhythmical jaw movements.
    Goldberg LJ; Chandler SH
    Can J Physiol Pharmacol; 1981 Jul; 59(7):707-12. PubMed ID: 6459151
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Discharge of spindle afferents from jaw-closing muscles during chewing in alert monkeys.
    Goodwin GM; Luschei ES
    J Neurophysiol; 1975 May; 38(3):560-71. PubMed ID: 123950
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Intracellular analysis of trigeminal motoneuron rhythmical activity during stimulation of pontomedullary reticular formation in anesthetized guinea pig.
    Gurahian SM; Chandler SH; Goldberg LJ
    J Neurophysiol; 1989 Dec; 62(6):1225-36. PubMed ID: 2600621
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Localization of central rhythm generator involved in cortically induced rhythmical masticatory jaw-opening movement in the guinea pig.
    Nozaki S; Iriki A; Nakamura Y
    J Neurophysiol; 1986 Apr; 55(4):806-25. PubMed ID: 3517246
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Branching of muscle spindle afferents of jaw closing muscles in the cat.
    Kato T; Kawamura Y; Morimoto T
    J Physiol; 1982 Feb; 323():483-95. PubMed ID: 6212671
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Primary- and secondary-like jaw-muscle spindle afferents have characteristic topographic distributions.
    Dessem D; Donga R; Luo P
    J Neurophysiol; 1997 Jun; 77(6):2925-44. PubMed ID: 9212247
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparison of mandibular movement trajectories and associated patterns of oral muscle electromyographic activity during spontaneous and apomorphine-induced rhythmic jaw movements in the guinea pig.
    Lambert RW; Goldberg LJ; Chandler SH
    J Neurophysiol; 1986 Feb; 55(2):301-19. PubMed ID: 3950693
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Analysis of activity of muscle spindles of the jaw-closing muscles during normal movements in the cat.
    Cody FW; Harrison LM; Taylor A
    J Physiol; 1975 Dec; 253(2):565-82. PubMed ID: 129562
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Angiotensin II-induced rhythmic jaw movements in the ketamine-anesthetized guinea pig.
    Gerstner GE; Goldberg LJ; De Bruyne K
    Brain Res; 1989 Jan; 478(2):233-40. PubMed ID: 2924127
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evidence that periodontal pressoreceptors provide positive feedback to jaw closing muscles during mastication.
    Lavigne G; Kim JS; Valiquette C; Lund JP
    J Neurophysiol; 1987 Aug; 58(2):342-58. PubMed ID: 3655872
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The relationship between cortically induced mandibular movements and lateral pterygoid and digastric muscle EMG activity in the anesthetized guinea pig.
    Lambert RW; Goldberg LJ; Chandler SH
    Brain Res; 1985 Mar; 329(1-2):7-17. PubMed ID: 3978463
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Phasic and tonic stretch reflexes in muscles with few muscle spindles: human jaw-opener muscles.
    Ostry DJ; Gribble PL; Levin MF; Feldman AG
    Exp Brain Res; 1997 Sep; 116(2):299-308. PubMed ID: 9348128
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Trigeminal premotor neurons in the bulbar parvocellular reticular formation participating in induction of rhythmical activity of trigeminal motoneurons by repetitive stimulation of the cerebral cortex in the guinea pig.
    Nozaki S; Iriki A; Nakamura Y
    J Neurophysiol; 1993 Feb; 69(2):595-608. PubMed ID: 8459288
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Influence of jaw gape on EMG of jaw muscles and jaw-stretch reflexes.
    Wang K; Lobbezoo F; Svensson P; Arendt-Nielsen L
    Arch Oral Biol; 2007 Jun; 52(6):562-70. PubMed ID: 17288988
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Relationship between jaw movements and trigeminal motoneuron membrane-potential fluctuations during cortically induced rhythmical jaw movements in the guinea pig.
    Goldberg LJ; Chandler SH; Tal M
    J Neurophysiol; 1982 Jul; 48(1):110-38. PubMed ID: 7119840
    [No Abstract]   [Full Text] [Related]  

  • 16. Behavior of jaw muscle spindle afferents during cortically induced rhythmic jaw movements in the anesthetized rabbit.
    Hidaka O; Morimoto T; Kato T; Masuda Y; Inoue T; Takada K
    J Neurophysiol; 1999 Nov; 82(5):2633-40. PubMed ID: 10561432
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Human jaw muscle motor behaviour. I. Motor drive.
    Hellsing G
    Swed Dent J; 1987; 11(6):251-61. PubMed ID: 2964735
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Trigeminal motoneuron responses to vestibular stimulation in the guinea pig.
    Tolu E; Caria MA; Chessa G; Melis F; Simula ME; Podda MV; Solinas A; Deriu F
    Arch Ital Biol; 1996 Mar; 134(2):141-51. PubMed ID: 8741222
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Sensory and motor responses of trigeminal and reticular neurons during ingestive behavior in rats.
    Yamamoto T; Matsuo R; Kiyomitsu Y; Kitamura R
    Exp Brain Res; 1989; 76(2):386-400. PubMed ID: 2767190
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The effects of a glycine antagonist (strychnine) on cortically induced rhythmical jaw movements in the anesthetized guinea pig.
    Chandler SH; Nielsen SA; Goldberg LJ
    Brain Res; 1985 Jan; 325(1-2):181-6. PubMed ID: 2983826
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.