These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 6460527)

  • 21. Characterization of dicyclohexylcarbodiimide binding site on coupling factor 1 of mitochondrial and bacterial membrane-bound ATPases.
    Pougeois R; Satre M; Vignais PV
    FEBS Lett; 1980 Aug; 117(1):344-8. PubMed ID: 6447624
    [No Abstract]   [Full Text] [Related]  

  • 22. Conversion of stable ATPase to labile ATPase by acetylation, and the alpha beta and alpha gamma subunit complexes during its reconstitution.
    Kagawa Y; Nukiwa N
    Biochem Biophys Res Commun; 1981 Jun; 100(3):1370-6. PubMed ID: 6456000
    [No Abstract]   [Full Text] [Related]  

  • 23. On the amino acids involved in the ATPase site of mitochondrial F1 and the implication of the subunit C.
    Godinot C; Penin F; Gautheron DC
    Arch Biochem Biophys; 1979 Jan; 192(1):225-34. PubMed ID: 35100
    [No Abstract]   [Full Text] [Related]  

  • 24. Divalent metals in beef heart mitochondrial adenosine triphosphatase. Demonstration of the metals in membrane-bound enzyme and studies of the interconversion of the "1-Mg" and "2-Mg" forms of the enzyme.
    Senior AE
    J Biol Chem; 1981 May; 256(10):4763-7. PubMed ID: 6453121
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Subunit equivalence in Escherichia coli and bovine heart mitochondrial F1F0 ATPases.
    Walker JE; Runswick MJ; Saraste M
    FEBS Lett; 1982 Sep; 146(2):393-6. PubMed ID: 6216120
    [No Abstract]   [Full Text] [Related]  

  • 26. Interactions between periodate-oxidized adenosine triphosphate and the mitochondrial adenosine triphosphatase [proceedings].
    Lowe PN; Baum H; Beechey RB
    Biochem Soc Trans; 1979 Oct; 7(5):1133-6. PubMed ID: 229031
    [No Abstract]   [Full Text] [Related]  

  • 27. Structure and mechanism of FoF1-type ATP synthases and ATPases.
    Penefsky HS; Cross RL
    Adv Enzymol Relat Areas Mol Biol; 1991; 64():173-214. PubMed ID: 1828930
    [No Abstract]   [Full Text] [Related]  

  • 28. Implications of the existence of two states of beef liver mitochondrial adenosine triphosphatase as revealed by kinetic studies.
    Wakagi T; Ohta T
    J Biochem; 1981 Apr; 89(4):1205-13. PubMed ID: 6454683
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Subunit interaction during catalysis. Alternating site cooperativity of mitochondrial adenosine triphosphatase.
    Hutton RL; Boyer PD
    J Biol Chem; 1979 Oct; 254(20):9990-3. PubMed ID: 158596
    [TBL] [Abstract][Full Text] [Related]  

  • 30. MgATP-induced inhibition of the enzymic activity of chloroform-released ox-heart mitochondrial ATPase.
    Lowe PN; Linnett PE; Baum H; Beechey RB
    Biochem Biophys Res Commun; 1979 Nov; 91(2):599-605. PubMed ID: 160228
    [No Abstract]   [Full Text] [Related]  

  • 31. High affinity binding of monovalent Pi by beef heart mitochondrial adenosine triphosphatase.
    Kasahara M; Penefsky HS
    J Biol Chem; 1978 Jun; 253(12):4180-7. PubMed ID: 149125
    [No Abstract]   [Full Text] [Related]  

  • 32. The effect of Mg2+ on mitochondrial F0.F1 ATPase and characteristics of the nucleotide binding sites.
    Ye JJ; Du J; Lin ZH
    Biochem Int; 1989 Dec; 19(6):1317-21. PubMed ID: 2534570
    [TBL] [Abstract][Full Text] [Related]  

  • 33. An active-site-directed adenosine triphosphate analogue binds to the beta-subunits of factor F1 mitochondrial adenosine triphosphatase with its triphosphate moiety.
    Drutsa VL; Kozlov IA; Milgrom YM; Shabarova ZA; Sokolova NI
    Biochem J; 1979 Aug; 182(2):617-9. PubMed ID: 159698
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The mechanism and regulation of ATP synthesis by F1-ATPases.
    Cross RL
    Annu Rev Biochem; 1981; 50():681-714. PubMed ID: 6455964
    [No Abstract]   [Full Text] [Related]  

  • 35. Binding of ADP to beef-heart mitochondrial ATPase (F1).
    Wielders JP; Slater EC; Muller JL
    Biochim Biophys Acta; 1980 Feb; 589(2):231-40. PubMed ID: 6444523
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Mechanism and regulation of mitochondrial ATP synthesis.
    Ernster L
    Curr Top Cell Regul; 1984; 24():313-34. PubMed ID: 6238808
    [No Abstract]   [Full Text] [Related]  

  • 37. Kinetics of interaction of adenosine diphosphate and adenosine triphosphate with adenosine triphosphatase of bovine heart submitochondrial particles.
    Vasilyeva EA; Fitin AF; Minkov IB; Vinogradov AD
    Biochem J; 1980 Jun; 188(3):807-15. PubMed ID: 6451217
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Adenine nucleotides regulate the functional transition in mitochondrial H+-ATPase and the kinetic behaviour of its ATP-synthetase form.
    Bronnikov GE; Samoylova EV
    Biochem Int; 1987 May; 14(5):859-69. PubMed ID: 2900638
    [TBL] [Abstract][Full Text] [Related]  

  • 39. KINETIC STUDIES OF THE ACTIVATION OF MITOCHONDRIAL ADENOSINE TRIPHOSPHATASE BY MG++.
    ULRICH F
    J Biol Chem; 1964 Oct; 239():3532-6. PubMed ID: 14245414
    [No Abstract]   [Full Text] [Related]  

  • 40. Equilibrium binding of 125I-labeled adenosinetriphosphatase inhibitor protein to complex V of the mitochondrial oxidative phosphorylation system.
    Wong SY; Galante YM; Hatefi Y
    Biochemistry; 1982 Nov; 21(23):5781-7. PubMed ID: 6217833
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.