BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

79 related articles for article (PubMed ID: 6460619)

  • 1. Using 2'(3')-O-trinitrophenyl derivatives of adenine nucleotides to study the structure and mechanism of functioning of soluble mitochondrial ATPase.
    Kormer ZS; Kozlov IA; Milgrom YM; Novikova IYu
    Eur J Biochem; 1982 Jan; 121(2):451-5. PubMed ID: 6460619
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Trinitrophenyl derivatives bind differently from parent adenine nucleotides to Ca2+-ATPase in the absence of Ca2+.
    Toyoshima C; Yonekura S; Tsueda J; Iwasawa S
    Proc Natl Acad Sci U S A; 2011 Feb; 108(5):1833-8. PubMed ID: 21239683
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Properties of binding sites for adenine nucleotides on ATPase from yeast mitochondria.
    Hashimoto T; Negawa Y; Tagawa K
    J Biochem; 1981 Oct; 90(4):1141-50. PubMed ID: 6458599
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structural rearrangements in soluble mitochondrial ATPase.
    Chernyak BV; Chernyak VY; Gladysheva TB; Kozhanova ZE; Kozlov IA
    Biochim Biophys Acta; 1981 May; 635(3):552-70. PubMed ID: 6453613
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of the natural ATPase inhibitor on the binding of adenine nucleotides and inorganic phosphate to mitochondrial F1-ATPase.
    Klein G; Lunardi J; Vignais PV
    Biochim Biophys Acta; 1981 Jul; 636(2):185-92. PubMed ID: 6456765
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Conformational changes in soluble mitochondrial ATPase by the spin probe method].
    Kerimov TM; Mil'grom IaM; Kozlov IA; Ruuge EK
    Biokhimiia; 1978 Aug; 43(8):1525-31. PubMed ID: 153772
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Inhibition of mitochondrial ATPase by water-soluble carbodiimide].
    Imedidze EA; Kozlov IA; Metel'skaia VA; Mil'grom IaM
    Biokhimiia; 1978 Aug; 43(8):1404-13. PubMed ID: 153770
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The non-catalytic nucleotide-binding site of mitochondrial ATPase is localised on the alpha-subunit(s) of factor F1.
    Kozlov IA; Milgrom YM
    Eur J Biochem; 1980 May; 106(2):457-62. PubMed ID: 6447065
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The number and localisation of adenine nucleotide-binding sites in beef-heart mitochondrial ATPase (F1) determined by photolabelling with 8-azido-ATP and 8-azido-ADP.
    Wagenvoord RJ; Kemp A; Slater EC
    Biochim Biophys Acta; 1980 Dec; 593(2):204-11. PubMed ID: 6453610
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fluorescence properties of 2' (or 3')-O-(2,4,6-trinitrophenyl) adenosine 5'-triphosphate and its use in the study of binding to heavy meromyosin ATPase.
    Hiratsuka T
    Biochim Biophys Acta; 1976 Nov; 453(1):293-7. PubMed ID: 11824
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Interaction of mitochondrial F1-ATPase with trinitrophenyl derivatives of ATP. Photoaffinity labeling of binding sites with 2-azido-2',3'-O-(4,6-trinitrophenyl)adenosine 5'-triphosphate.
    Murataliev MB
    Eur J Biochem; 1995 Sep; 232(2):578-85. PubMed ID: 7556210
    [TBL] [Abstract][Full Text] [Related]  

  • 12. 2' (or 3')-O-(2, 4, 6-trinitrophenyl)adenosine 5'-triphosphate as a probe for the binding site of heavy meromyosin ATPase.
    Hiratsuka T
    J Biochem; 1975 Dec; 78(6):1135-47. PubMed ID: 131793
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The Methanocaldococcus jannaschii protein Mj0968 is not a P-type ATPase.
    Bramkamp M; Gassel M; Herkenhoff-Hesselmann B; Bertrand J; Altendorf K
    FEBS Lett; 2003 May; 543(1-3):31-6. PubMed ID: 12753900
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Physical and enzymatic properties of nucleotide-depleted beef heart mitochondrial adenosine triphosphatase.
    Garrett NE; Penefsky HS
    J Supramol Struct; 1975; 3(5-6):469-78. PubMed ID: 128661
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Structural alterations and inhibition of unisite and multisite ATP hydrolysis in soluble mitochondrial F1 by guanidinium chloride.
    Tuena de Gómez-Puyou M; Domínguez-Ramírez L; Reyes-Vivas H; Gómez-Puyou A
    Biochemistry; 2001 Mar; 40(11):3396-402. PubMed ID: 11258961
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Classification of nucleotide binding sites on mitochondrial F1-ATPase from yeast.
    Recktenwald D; Hess B
    Biochim Biophys Acta; 1980 Oct; 592(3):377-84. PubMed ID: 6448067
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Substrate specificity of soluble mitochondrial ATPase].
    Kozlov IA; Metel'sakaia VA; Mikhaĭlov SN; Novikov IIu; Florent'ev VL
    Biokhimiia; 1978; 43(4):702-7. PubMed ID: 148922
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Binding of adenine nucleotides to the F1-inhibitor protein complex of bovine heart submitochondrial particles.
    Martins OB; Salgado-Martins I; Grieco MA; Gómez-Puyou A; de Gómez-Puyou MT
    Biochemistry; 1992 Jun; 31(25):5784-90. PubMed ID: 1610824
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Stabilization of rat liver mitochondrial F1-adenosine triphosphatase during chloroform-induced solubilization.
    Kopecký J; Kuzela S; Kraml J; Drahota Z
    Biochim Biophys Acta; 1979 Aug; 547(2):177-87. PubMed ID: 157160
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Localisation of adenine nucleotide-binding sites on beef-heart mitochondrial ATPase by photolabelling with 8-azido-ADP and 8-azido-ATP.
    Wagenvoord RJ; van der Kraan I; Kemp A
    Biochim Biophys Acta; 1979 Oct; 548(1):85-95. PubMed ID: 158387
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.