These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 6460763)

  • 21. AMP deaminases of rat small intestine.
    Spychała J; Marszałek J; Kucharczyk E
    Biochim Biophys Acta; 1986 Feb; 880(2-3):123-30. PubMed ID: 3942784
    [TBL] [Abstract][Full Text] [Related]  

  • 22. In vitro and in situ studies on the inhibition of yeast AMP deaminase by fatty acids.
    Yoshino M; Murakami K
    Biochim Biophys Acta; 1981 Aug; 660(2):199-203. PubMed ID: 7025914
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Pathways of adenine nucleotide catabolism in primary rat muscle cultures.
    Zoref-Shani E; Shainberg A; Sperling O
    Biochim Biophys Acta; 1987 Dec; 926(3):287-95. PubMed ID: 2825800
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Role of the adenylate deaminase reaction in regulation of adenine nucleotide metabolism in Ehrlich ascites tumor cells.
    Chapman AG; Miller AL; Atkinson DE
    Cancer Res; 1976 Mar; 36(3):1144-50. PubMed ID: 943236
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Inorganic phosphate amplifies the effects of AMP and fructose-2,6-bisphosphate on yeast phosphofructokinase.
    Przybylski F; Nissler K; Schellenberger W; Hofmann E
    Biomed Biochim Acta; 1985; 44(11-12):1559-65. PubMed ID: 2936338
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Possible correlation between binding of muscle type AMP deaminase to myofibrils and ammoniagenesis in rat skeletal muscle on electrical stimulation.
    Shiraki H; Miyamoto S; Matsuda Y; Momose E; Nakagawa H
    Biochem Biophys Res Commun; 1981 Jun; 100(3):1099-103. PubMed ID: 7271793
    [No Abstract]   [Full Text] [Related]  

  • 27. Influence of acidosis on AMP deaminase activity in contracting fast-twitch muscle.
    Dudley GA; Terjung RL
    Am J Physiol; 1985 Jan; 248(1 Pt 1):C43-50. PubMed ID: 3966542
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Maximum activities and effects of fructose bisphosphate on pyruvate kinase from muscles of vertebrates and invertebrates in relation to the control of glycolysis.
    Zammit VA; Beis I; Newsholme EA
    Biochem J; 1978 Sep; 174(3):989-98. PubMed ID: 215127
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Glycolysis and energy metabolism in rat liver during warm and cold ischemia: evidence of an activation of the regulatory enzyme phosphofructokinase.
    Churchill TA; Cheetham KM; Fuller BJ
    Cryobiology; 1994 Oct; 31(5):441-52. PubMed ID: 7988153
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The effects of calcium ions on the activities of trehalase, hexokinase, phosphofructokinase, fructose diphosphatase and pyruvate kinase from various muscles.
    Vaughan H; Thornton SD; Newsholme EA
    Biochem J; 1973 Mar; 132(3):527-35. PubMed ID: 4353381
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Activation of glycolysis by insulin with a sequential increase of the 6-phosphofructo-2-kinase activity, fructose-2,6-bisphosphate level and pyruvate kinase activity in cultured rat hepatocytes.
    Probst I; Unthan-Fechner K
    Eur J Biochem; 1985 Dec; 153(2):347-53. PubMed ID: 3000776
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The mechanism of adenosine triphosphate depletion in the liver after a load of fructose. A kinetic study of liver adenylate deaminase.
    van den Berghe G; Bronfman M; Vanneste R; Hers HG
    Biochem J; 1977 Mar; 162(3):601-9. PubMed ID: 869906
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Adenylate metabolism in the heart. Regulatory properties of rabbit cardiac adenylate deaminase.
    Barsacchi R; Ranieri-Raggi M; Bergamini C; Raggi A
    Biochem J; 1979 Aug; 182(2):361-6. PubMed ID: 41518
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Fructose-induced adenine nucleotide catabolism in isolated rat hepatocytes.
    Smith CM; Rovamo LM; Raivio KO
    Can J Biochem; 1977 Dec; 55(12):1237-40. PubMed ID: 597772
    [TBL] [Abstract][Full Text] [Related]  

  • 35. [Role of adenylate kinase, AMP deaminase and 5'-nucleotidase in the metabolism of adenylic nucleotides].
    Litovchenko IN; Savitskiĭ IV
    Biokhimiia; 1984 Aug; 49(8):1248-52. PubMed ID: 6093896
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Catalytic and regulatory site composition of yeast AMP deaminase by comparative binding and rate studies. Resolution of the cooperative mechanism.
    Merkler DJ; Schramm VL
    J Biol Chem; 1990 Mar; 265(8):4420-6. PubMed ID: 2407736
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Catabolism of D-fructose and D-ribose by Pseudomonas doudoroffii. II. Properties of 1-phosphofructokinase and 6-phosphofructokinase.
    Baumann L; Baumann P
    Arch Microbiol; 1975 Nov; 105(3):241-8. PubMed ID: 242298
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Response of rat cerebral glycolytic enzymes to hyperammonemic states.
    Ratnakumari L; Murthy CR
    Neurosci Lett; 1993 Oct; 161(1):37-40. PubMed ID: 8255543
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Allosteric activation and competitive inhibition of yeast phosphofructokinase by d-fructose.
    Betz A; Röttger U; Kreuzberg KH
    Arch Microbiol; 1975 Apr; 103(2):123-6. PubMed ID: 125565
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Comparison of AMP deaminase from skeletal muscle of acidotic and normal rats.
    Solano C; Coffee CJ
    Biochim Biophys Acta; 1979 Feb; 582(3):369-79. PubMed ID: 33719
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.