BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

177 related articles for article (PubMed ID: 6460764)

  • 41. Subunit interaction in the mitochondrial H+-translocating ATPase. The role of oligomycin sensitivity conferral protein and coupling factor 6 in ATPase binding and Pi-ATP exchange in mitochondrial membranes.
    Liang AM; Fisher RJ
    J Biol Chem; 1983 Apr; 258(8):4784-7. PubMed ID: 6131898
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Photolabelling with 8-azido-adenine nucleotides of adenine nucleotide-binding sites in isolated spinach chloroplast ATPase (CF1).
    Wagenvoord RJ; Verschoor GJ; Kemp A
    Biochim Biophys Acta; 1981 Feb; 634(2):229-36. PubMed ID: 6451239
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Studies of the kinetics of the isolated mitochondrial ATPase using dinitrophenol as a probe.
    Harris DA; Dall-Larsen T; Klungsøyr L
    Biochim Biophys Acta; 1981 Apr; 635(2):412-8. PubMed ID: 6453612
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Interaction of fluorescent adenine nucleotide derivatives with the ADP/ATP carrier in mitochondria. 2. [5-(Dimethylamino)-1-naphthoyl]adenine nucleotides as probes for the transition between c and m states of the ADP/ATP carrier.
    Klingenberg M; Mayer I; Dahms AS
    Biochemistry; 1984 May; 23(11):2442-9. PubMed ID: 6089872
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Isolation, characterization, and reconstitution of a solubilized fraction containing the hydrophobic sector of the mitochondrial proton pump.
    Alfonzo M; Kandrach MA; Racker E
    J Bioenerg Biomembr; 1981 Dec; 13(5-6):375-91. PubMed ID: 6460756
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Three adenine nucleotide binding sites in F1-F0 mitochondrial ATPase as revealed by presteady-state and steady-state kinetics of ATP hydrolysis. Evidence for two inhibitory ADP-specific noncatalytic sites.
    Bulygin VV; Vinogradov AD
    FEBS Lett; 1988 Aug; 236(2):497-500. PubMed ID: 2900778
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Classification of nucleotide binding sites on mitochondrial F1-ATPase from yeast.
    Recktenwald D; Hess B
    Biochim Biophys Acta; 1980 Oct; 592(3):377-84. PubMed ID: 6448067
    [TBL] [Abstract][Full Text] [Related]  

  • 48. The structure of mitochondrial ATPase.
    Senior AE
    Biochim Biophys Acta; 1973 Dec; 301(3):249-77. PubMed ID: 4273937
    [No Abstract]   [Full Text] [Related]  

  • 49. 1H-NMR studies on nucleotide binding to the catalytic sites of bovine mitochondrial F1-ATPase.
    Garin J; Vignais PV; Gronenborn AM; Clore GM; Gao Z; Baeuerlein E
    FEBS Lett; 1988 Dec; 242(1):178-82. PubMed ID: 2904888
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Titration of the binding sites for the oligomycin-sensitivity conferring protein in beef heart submitochondrial particles.
    Dupuis A; Satre M; Vignais PV
    FEBS Lett; 1983 May; 156(1):99-102. PubMed ID: 6189744
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Structure of the yeast mitochondrial adenosine triphosphatase. Results of trypsin degradation.
    Todd RD; Douglas MG
    J Biol Chem; 1981 Jul; 256(13):6990-4. PubMed ID: 6453872
    [TBL] [Abstract][Full Text] [Related]  

  • 52. The non-catalytic nucleotide-binding site of mitochondrial ATPase is localised on the alpha-subunit(s) of factor F1.
    Kozlov IA; Milgrom YM
    Eur J Biochem; 1980 May; 106(2):457-62. PubMed ID: 6447065
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Inhibition of oxidative phosphorylation by Ca2+ or Sr2+: a competition with Mg2+ for the formation of adenine nucleotide complexes.
    Fagian MM; da Silva LP; Vercesi AE
    Biochim Biophys Acta; 1986 Dec; 852(2-3):262-8. PubMed ID: 3022807
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Characterization of the interaction of parathyroid hormone with the mitochondrial ATPase.
    Laethem R; Zull JE
    Arch Biochem Biophys; 1990 Oct; 282(1):161-9. PubMed ID: 2145804
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Nucleotide binding sites on mitochondrial F1-ATPase. Electron spin resonance spectroscopy and photolabeling by azido-spin-labeled adenine nucleotides support an adenylate kinase-like orientation.
    Vogel PD; Nett JH; Sauer HE; Schmadel K; Cross RL; Trommer WE
    J Biol Chem; 1992 Jun; 267(17):11982-6. PubMed ID: 1318307
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Abolition of anion-activation of mitochondrial F1-ATPase by the partial ADP-induced hysteretic inhibition.
    Baubichon H; Di Pietro A; Godinot C; Gautheron DC
    FEBS Lett; 1982 Jan; 137(2):261-4. PubMed ID: 6460647
    [No Abstract]   [Full Text] [Related]  

  • 57. H+-ATPases in biological systems: an overview of their function, structure, mechanism, and regulatory properties.
    Pedersen PL
    Ann N Y Acad Sci; 1982; 402():1-20. PubMed ID: 6220632
    [No Abstract]   [Full Text] [Related]  

  • 58. Coupling factor B involvement in the inhibition of Pi-ATP exchange activity by N-ethylmaleimide.
    Hughes J; Joshi S; Sanadi DR
    FEBS Lett; 1983 Mar; 153(2):441-6. PubMed ID: 6137415
    [No Abstract]   [Full Text] [Related]  

  • 59. Uncoupler-reversible inhibition of mitochondrial ATPase by metal chelates of bathophenanthroline. I. General features.
    Carlsson C; Ernster L
    Biochim Biophys Acta; 1981 Dec; 638(2):345-57. PubMed ID: 6459123
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Binding of ADP to beef-heart mitochondrial ATPase (F1).
    Wielders JP; Slater EC; Muller JL
    Biochim Biophys Acta; 1980 Feb; 589(2):231-40. PubMed ID: 6444523
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.