These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 6461651)

  • 41. NAD(P)H-ubiquinone oxidoreductases in plant mitochondria.
    Møller IM; Rasmusson AG; Fredlund KM
    J Bioenerg Biomembr; 1993 Aug; 25(4):377-84. PubMed ID: 8226719
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Purification and characterization of a rotenone-insensitive NADH:Q6 oxidoreductase from mitochondria of Saccharomyces cerevisiae.
    de Vries S; Grivell LA
    Eur J Biochem; 1988 Sep; 176(2):377-84. PubMed ID: 3138118
    [TBL] [Abstract][Full Text] [Related]  

  • 43. The mitochondrial generation of hydrogen peroxide. General properties and effect of hyperbaric oxygen.
    Boveris A; Chance B
    Biochem J; 1973 Jul; 134(3):707-16. PubMed ID: 4749271
    [TBL] [Abstract][Full Text] [Related]  

  • 44. The proton-translocating nicotinamide-adenine dinucleotide (phosphate) transhydrogenase of rat liver mitochondria.
    Moyle J; Mitchell P
    Biochem J; 1973 Mar; 132(3):571-85. PubMed ID: 4146799
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Reduction of the Q-pool by duroquinol via the two quinone-binding sites of the QH2: cytochrome c oxidoreductase. A model for the equilibrium between cytochrome b-562 and the Q-pool.
    Marres CA; de Vries S
    Biochim Biophys Acta; 1991 Mar; 1057(1):51-63. PubMed ID: 1849003
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Chromium(V) is produced upon reduction of chromate by mitochondrial electron transport chain complexes.
    Rossi SC; Wetterhahn KE
    Carcinogenesis; 1989 May; 10(5):913-20. PubMed ID: 2539917
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Oxidative phosphorylation in intact hepatocytes: quantitative characterization of the mechanisms of change in efficiency and cellular consequences.
    Leverve X; Sibille B; Devin A; Piquet MA; Espié P; Rigoulet M
    Mol Cell Biochem; 1998 Jul; 184(1-2):53-65. PubMed ID: 9746312
    [TBL] [Abstract][Full Text] [Related]  

  • 48. [Intermembrane electron transport in the dynamics of high-amplitude swelling of rat liver mitochondria].
    Lemeshko VV; Shekh VE; Aleksenko TV
    Ukr Biokhim Zh (1978); 1995; 67(2):28-34. PubMed ID: 8592781
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Effects of idebenone (CV-2619) and its metabolites on respiratory activity and lipid peroxidation in brain mitochondria from rats and dogs.
    Sugiyama Y; Fujita T; Matsumoto M; Okamoto K; Imada I
    J Pharmacobiodyn; 1985 Dec; 8(12):1006-17. PubMed ID: 2871147
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Role of sulfhydryl groups in benzoquinone-induced Ca2+ release by rat liver mitochondria.
    Moore GA; Weis M; Orrenius S; O'Brien PJ
    Arch Biochem Biophys; 1988 Dec; 267(2):539-50. PubMed ID: 3214168
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Cytochrome c oxidase is not a proton pump.
    Moyle J; Mitchell P
    FEBS Lett; 1978 Apr; 88(2):268-72. PubMed ID: 206463
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Discrete catalytic sites for quinone in the ubiquinol-cytochrome c2 oxidoreductase of Rhodopseudomonas capsulata. Evidence from a mutant defective in ubiquinol oxidation.
    Robertson DE; Davidson E; Prince RC; van den Berg WH; Marrs BL; Dutton PL
    J Biol Chem; 1986 Jan; 261(2):584-91. PubMed ID: 3001072
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Menadione- (2-methyl-1,4-naphthoquinone-) dependent enzymatic redox cycling and calcium release by mitochondria.
    Frei B; Winterhalter KH; Richter C
    Biochemistry; 1986 Jul; 25(15):4438-43. PubMed ID: 3092856
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Reduction of 2-methoxy-1,4-naphtoquinone by mitochondrially-localized Nqo1 yielding NAD
    Ravasz D; Kacso G; Fodor V; Horvath K; Adam-Vizi V; Chinopoulos C
    Biochim Biophys Acta Bioenerg; 2018 Sep; 1859(9):909-924. PubMed ID: 29746824
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Inhibitory effects of two structurally related carbocyanine laser dyes on the activity of bovine heart mitochondrial and Paracoccus denitrificans NADH-ubiquinone reductase. Evidence for a rotenone-type mechanism.
    Anderson WM; Chambers BB; Wood JM; Benninger L
    Biochem Pharmacol; 1991 Mar; 41(5):677-84. PubMed ID: 1900156
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Characterization of NAD(P)H-dependent ubiquinone reductase activities in rat liver microsomes.
    Shigemura T; Kang D; Nagata-Kuno K; Takeshige K; Hamasaki N
    Biochim Biophys Acta; 1993 Mar; 1141(2-3):213-20. PubMed ID: 8443209
    [TBL] [Abstract][Full Text] [Related]  

  • 57. An NADH:quinone oxidoreductase of the halotolerant bacterium Ba1 is specifically dependent on sodium ions.
    Ken-Dror S; Lanyi JK; Schobert B; Silver B; Avi-Dor Y
    Arch Biochem Biophys; 1986 Feb; 244(2):766-72. PubMed ID: 3947089
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Redox regulation of mitochondrial functional activity by quinones.
    Krylova NG; Kulahava TA; Cheschevik VT; Dremza IK; Semenkova GN; Zavodnik IB
    Physiol Int; 2016 Dec; 103(4):439-458. PubMed ID: 28229632
    [TBL] [Abstract][Full Text] [Related]  

  • 59. The mechanism of the quinone reductase reaction of pig heart lipoamide dehydrogenase.
    Vienozinskis J; Butkus A; Cenas N; Kulys J
    Biochem J; 1990 Jul; 269(1):101-5. PubMed ID: 2375745
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Kinetics of Ca2+ carrier in rat liver mitochondria.
    Bragadin M; Pozzan T; Azzone GF
    Biochemistry; 1979 Dec; 18(26):5972-8. PubMed ID: 42437
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.