These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
117 related articles for article (PubMed ID: 6462111)
41. Oxidation of reduced nicotinamide-adenine dinucleotide by the malate-aspartate shuttle in Ehrlich ascites tumour cells. Dionisi O; Longhi G; Eboli ML; Galeotti T; Terranova T Biochim Biophys Acta; 1974 Mar; 333(3):577-80. PubMed ID: 4367964 [No Abstract] [Full Text] [Related]
42. SIRT3-dependent GOT2 acetylation status affects the malate-aspartate NADH shuttle activity and pancreatic tumor growth. Yang H; Zhou L; Shi Q; Zhao Y; Lin H; Zhang M; Zhao S; Yang Y; Ling ZQ; Guan KL; Xiong Y; Ye D EMBO J; 2015 Apr; 34(8):1110-25. PubMed ID: 25755250 [TBL] [Abstract][Full Text] [Related]
43. Effects of fatty acids on cardioprotection by pre-ischaemic inhibition of the malate-aspartate shuttle. Dalgas C; Povlsen JA; Løfgren B; Erichsen SB; Bøtker HE Clin Exp Pharmacol Physiol; 2012 Oct; 39(10):878-85. PubMed ID: 22831462 [TBL] [Abstract][Full Text] [Related]
44. Role of NADH shuttle system in glucose-induced activation of mitochondrial metabolism and insulin secretion. Eto K; Tsubamoto Y; Terauchi Y; Sugiyama T; Kishimoto T; Takahashi N; Yamauchi N; Kubota N; Murayama S; Aizawa T; Akanuma Y; Aizawa S; Kasai H; Yazaki Y; Kadowaki T Science; 1999 Feb; 283(5404):981-5. PubMed ID: 9974390 [TBL] [Abstract][Full Text] [Related]
45. Distributions of aspartate aminotransferase and malate dehydrogenase activities in rat retinal layers. Ross CD; Godfrey DA J Histochem Cytochem; 1985 Jul; 33(7):624-30. PubMed ID: 4008916 [TBL] [Abstract][Full Text] [Related]
46. The effect of kainic, quinolinic and beta-kainic acids on the release of endogenous amino acids from rat brain slices. Connick JH; Stone TW Biochem Pharmacol; 1986 Oct; 35(20):3631-5. PubMed ID: 2876711 [TBL] [Abstract][Full Text] [Related]
47. Disruption of mitochondrial malate-aspartate shuttle activity in mouse blastocysts impairs viability and fetal growth. Mitchell M; Cashman KS; Gardner DK; Thompson JG; Lane M Biol Reprod; 2009 Feb; 80(2):295-301. PubMed ID: 18971426 [TBL] [Abstract][Full Text] [Related]
48. Quinolinic acid effects on amino acid release from the rat cerebral cortex in vitro and in vivo. Connick JH; Stone TW Br J Pharmacol; 1988 Apr; 93(4):868-76. PubMed ID: 2898959 [TBL] [Abstract][Full Text] [Related]
49. Effects of calcium ions on the malate-aspartate shuttle in slow-cooled boar spermatozoa. Nishimura K Biol Reprod; 1993 Sep; 49(3):537-43. PubMed ID: 8399847 [TBL] [Abstract][Full Text] [Related]
50. Studies on the active transfer of reducing equivalents into mitochondria via the malate-aspartate shuttle. Bremer J; Davis EJ Biochim Biophys Acta; 1975 Mar; 376(3):387-97. PubMed ID: 164904 [TBL] [Abstract][Full Text] [Related]
51. Preliminary study of a new method for monitoring viability of transplanted islets of Langerhans. Fiedor P; Tatarkiewicz K; Sitarek E; Sabat M; Orlowski T; Licinska I; Lukasiewicz A; Wozniak I; Rowinski W; Hardy MA Transplant Proc; 1994 Dec; 26(6):3405. PubMed ID: 7527972 [No Abstract] [Full Text] [Related]
52. Dicarboxylic amino acids shunt in mitochondria of amphibian oocytes. Petrucci D; Amicarelli F; Paponetti B Cell Biol Int Rep; 1983 Mar; 7(3):193. PubMed ID: 6133631 [No Abstract] [Full Text] [Related]
53. Ca2+-dependent activation of the malate-aspartate shuttle by norepinephrine and vasopressin in perfused rat liver. Sugano T; Nishimura K; Sogabe N; Shiota M; Oyama N; Noda S; Ohta M Arch Biochem Biophys; 1988 Jul; 264(1):144-54. PubMed ID: 2899418 [TBL] [Abstract][Full Text] [Related]
54. Methotrexate: studies on cellular metabolism. IV. Effect on the mitochondrial oxidation of cytosolic-reducing equivalents in HeLa cells. Bastos MT; Oliveria MB; Campello AP; Klüppel ML Cell Biochem Funct; 1990 Oct; 8(4):199-203. PubMed ID: 2272117 [TBL] [Abstract][Full Text] [Related]
55. [Generation and transport systems of restored equivalents in rabbit brain tissue under experimental atherosclerosis]. Gil'miyarova FN; Radomskaya VM; Shipigel' AS Ukr Biokhim Zh; 1975; 47(4):522-7. PubMed ID: 1209781 [TBL] [Abstract][Full Text] [Related]
56. The stimulus-secretion coupling of amino acid-induced insulin release: metabolism of L-asparagine in pancreatic islets. Sener A; Best L; Malaisse-Lagae F; Malaisse WJ Arch Biochem Biophys; 1984 Feb; 229(1):155-69. PubMed ID: 6367658 [TBL] [Abstract][Full Text] [Related]
57. Evidence for the occurrence of the malate-citrate shuttle in intact Ehrlich ascites tumor cells. Eboli ML; Galeotti T Biochim Biophys Acta; 1981 Nov; 638(1):75-9. PubMed ID: 7295712 [TBL] [Abstract][Full Text] [Related]
58. In vivo release of [3H]-purines by quinolinic acid and related compounds. Perkins MN; Stone TW Br J Pharmacol; 1983 Oct; 80(2):263-7. PubMed ID: 6317129 [TBL] [Abstract][Full Text] [Related]
59. The malate/aspartate shuttle and pyruvate kinase as targets involved in the stimulation of gluconeogenesis by phenylephrine. Leverve XM; Verhoeven AJ; Groen AK; Meijer AJ; Tager JM Eur J Biochem; 1986 Mar; 155(3):551-6. PubMed ID: 3956499 [TBL] [Abstract][Full Text] [Related]
60. Evidence that stimulation of gluconeogenesis by fatty acid is mediated through thermodynamic mechanisms. Berry MN; Gregory RB; Grivell AR; Henly DC; Phillips JW; Wallace PG; Welch GR FEBS Lett; 1988 Apr; 231(1):19-24. PubMed ID: 2966075 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]