These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

108 related articles for article (PubMed ID: 6462169)

  • 1. Self-association of rabbit muscle phosphofructokinase: effects of ligands.
    Hesterberg LK; Lee JC
    Biochemistry; 1982 Jan; 21(2):216-22. PubMed ID: 6462169
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Self-association of rabbit muscle phosphofructokinase at pH 7.0: stoichiometry.
    Hesterberg LK; Lee JC
    Biochemistry; 1981 May; 20(10):2974-80. PubMed ID: 6454440
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Thermodynamics of dimer and tetramer formations in rabbit muscle phosphofructokinase.
    Luther MA; Cai GZ; Lee JC
    Biochemistry; 1986 Dec; 25(24):7931-7. PubMed ID: 2948566
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An equilibrium binding study of the interaction of fructose 6-phosphate and fructose 1,6-bisphosphate with rabbit muscle phosphofructokinase.
    Hill DE; Hammes GG
    Biochemistry; 1975 Jan; 14(2):203-13. PubMed ID: 123467
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Self-association of rabbit muscle phosphofructokinase: role of subunit interaction in regulation of enzymatic activity.
    Luther MA; Gilbert HF; Lee JC
    Biochemistry; 1983 Nov; 22(24):5494-500. PubMed ID: 6228252
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Tetramer-dimer equilibrium of phosphofructokinase and formation of hybrid tetramers.
    Le Bras G; Auzat I; Garel JR
    Biochemistry; 1995 Oct; 34(40):13203-10. PubMed ID: 7548084
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Choice of the association model of rabbit muscle phosphofructokinase using mathematical modeling].
    Rapanovich II; Tsybanov SZh; Rodionov IuV; Kagan ZS
    Biokhimiia; 1980 Jul; 45(7):1245-66. PubMed ID: 6452177
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Regulation of rabbit muscle phosphofructokinase by phosphorylation.
    Cai GZ; Callaci TP; Luther MA; Lee JC
    Biophys Chem; 1997 Feb; 64(1-3):199-209. PubMed ID: 9127945
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structural properties of an active form of rabbit muscle phosphofructokinase.
    Hesterberg LK; Lee JC; Erickson HP
    J Biol Chem; 1981 Sep; 256(18):9724-30. PubMed ID: 6457038
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Determination of the free-energy coupling between ATP and an affinity label attached to rabbit muscle phosphofructokinase.
    Ogilvie JW
    Biochemistry; 1985 Jan; 24(2):317-21. PubMed ID: 3156632
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Binding of regulatory ligands to rabbit muscle phosphofructokinase. A model for nucleotide binding as a function of temperature and pH.
    Pettigrew DW; Frieden C
    J Biol Chem; 1979 Mar; 254(6):1887-95. PubMed ID: 33988
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Regulation and quaternary structural changes in rabbit muscle phosphofructokinase.
    Cai GZ; Lee LL; Luther MA; Lee JC
    Biophys Chem; 1990 Aug; 37(1-3):97-106. PubMed ID: 2149521
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fructose-2,6-bisphosphate counteracts guanidinium chloride-, thermal-, and ATP-induced dissociation of skeletal muscle key glycolytic enzyme 6-phosphofructo-1-kinase: A structural mechanism for PFK allosteric regulation.
    Zancan P; Almeida FV; Faber-Barata J; Dellias JM; Sola-Penna M
    Arch Biochem Biophys; 2007 Nov; 467(2):275-82. PubMed ID: 17923106
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Thermodynamics of concanavalin A dimer-tetramer self-association: sedimentation equilibrium studies.
    Senear DF; Teller DC
    Biochemistry; 1981 May; 20(11):3076-83. PubMed ID: 7248268
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Sedimentation study of a catalytically active form of rabbit muscle phosphofructokinase at pH 8.55.
    Hesterberg LK; Lee JC
    Biochemistry; 1980 May; 19(10):2030-9. PubMed ID: 6445746
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Studies on specific elution of rabbit muscle phosphofructokinase with allosteric ligands].
    Rapanovich II; Vuĭtsik NR; Tsybanova LIa
    Biokhimiia; 1976 Apr; 41(4):740-8. PubMed ID: 139173
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Thermodynamic linkages in rabbit muscle pyruvate kinase: kinetic, equilibrium, and structural studies.
    Oberfelder RW; Lee LL; Lee JC
    Biochemistry; 1984 Aug; 23(17):3813-21. PubMed ID: 6487576
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Calmodulin upregulates skeletal muscle 6-phosphofructo-1-kinase reversing the inhibitory effects of allosteric modulators.
    Marinho-Carvalho MM; Costa-Mattos PV; Spitz GA; Zancan P; Sola-Penna M
    Biochim Biophys Acta; 2009 Aug; 1794(8):1175-80. PubMed ID: 19250982
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ordered disruption of subunit interfaces during the stepwise reversible dissociation of Escherichia coli phosphofructokinase with KSCN.
    Deville-Bonne D; Le Bras G; Teschner W; Garel JR
    Biochemistry; 1989 Feb; 28(4):1917-22. PubMed ID: 2524212
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Multiple forms of rabbit muscle phosphofructokinase revealed by means of specific elution].
    Ralanovich II; Kazakov MA
    Biokhimiia; 1975; 40(4):716-25. PubMed ID: 1113
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.