These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 6462527)

  • 1. Simultaneous recording of cortical and thalamic EEG and single neuron activity in the cat association system during spindles.
    Avoli M; McLachlan RS; Gloor P
    Neurosci Lett; 1984 Jun; 47(1):29-36. PubMed ID: 6462527
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Transition from spindles to generalized spike and wave discharges in the cat: simultaneous single-cell recordings in cortex and thalamus.
    McLachlan RS; Avoli M; Gloor P
    Exp Neurol; 1984 Aug; 85(2):413-25. PubMed ID: 6745382
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cellular basis of EEG slow rhythms: a study of dynamic corticothalamic relationships.
    Contreras D; Steriade M
    J Neurosci; 1995 Jan; 15(1 Pt 2):604-22. PubMed ID: 7823167
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Low-frequency rhythms in the thalamus of intact-cortex and decorticated cats.
    Timofeev I; Steriade M
    J Neurophysiol; 1996 Dec; 76(6):4152-68. PubMed ID: 8985908
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Spindle oscillation in cats: the role of corticothalamic feedback in a thalamically generated rhythm.
    Contreras D; Steriade M
    J Physiol; 1996 Jan; 490 ( Pt 1)(Pt 1):159-79. PubMed ID: 8745285
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An analysis of penicillin-induced generalized spike and wave discharges using simultaneous recordings of cortical and thalamic single neurons.
    Avoli M; Gloor P; Kostopoulos G; Gotman J
    J Neurophysiol; 1983 Oct; 50(4):819-37. PubMed ID: 6631465
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The activity of thalamus and cerebral cortex neurons in rabbits during "slow wave-spindle" EEG complexes.
    Burikov AA; Bereshpolova YuI
    Neurosci Behav Physiol; 1999; 29(2):143-9. PubMed ID: 10432501
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dynamic interactions determine partial thalamic quiescence in a computer network model of spike-and-wave seizures.
    Lytton WW; Contreras D; Destexhe A; Steriade M
    J Neurophysiol; 1997 Apr; 77(4):1679-96. PubMed ID: 9114229
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Participation of cortical and thalamic cells in the feline association system to thalamocortical recruiting responses.
    Avoli M
    Neurosci Lett; 1983 Jul; 38(2):151-6. PubMed ID: 6621936
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Synaptic interactions between thalamic and cortical inputs onto cortical neurons in vivo.
    Fuentealba P; Crochet S; Timofeev I; Steriade M
    J Neurophysiol; 2004 May; 91(5):1990-8. PubMed ID: 15069096
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cortical and thalamic cellular correlates of electroencephalographic burst-suppression.
    Steriade M; Amzica F; Contreras D
    Electroencephalogr Clin Neurophysiol; 1994 Jan; 90(1):1-16. PubMed ID: 7509269
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Synchronization of low-frequency rhythms in corticothalamic networks.
    Contreras D; Steriade M
    Neuroscience; 1997 Jan; 76(1):11-24. PubMed ID: 8971755
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Integration of low-frequency sleep oscillations in corticothalamic networks.
    Amzica F; Steriade M
    Acta Neurobiol Exp (Wars); 2000; 60(2):229-45. PubMed ID: 10909181
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nucleus basalis and thalamic control of neocortical activity in the freely moving rat.
    Buzsaki G; Bickford RG; Ponomareff G; Thal LJ; Mandel R; Gage FH
    J Neurosci; 1988 Nov; 8(11):4007-26. PubMed ID: 3183710
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Various aspects of the physiology and pathophysiology of spindles in the cat].
    Gloor P
    Rev Electroencephalogr Neurophysiol Clin; 1983 May; 13(1):3-19. PubMed ID: 6612054
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The time course of sigma activity and slow-wave activity during NREMS in cortical and thalamic EEG of the cat during baseline and after 12 hours of wakefulness.
    Lancel M; van Riezen H; Glatt A
    Brain Res; 1992 Nov; 596(1-2):285-95. PubMed ID: 1467989
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nature of thalamo-cortical relations during spontaneous barbiturate spindle activity.
    Andersen P; Andersson SA; Lomo T
    J Physiol; 1967 Sep; 192(2):283-307. PubMed ID: 4292908
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Thalamic and cortical spindles during early ontogenesis in kittens.
    Domich L; Oakson G; DeschĂȘnes M; Steriade M
    Brain Res; 1987 Jan; 428(1):140-2. PubMed ID: 3815109
    [TBL] [Abstract][Full Text] [Related]  

  • 19. State-dependent fluctuations of low-frequency rhythms in corticothalamic networks.
    Contreras D; Steriade M
    Neuroscience; 1997 Jan; 76(1):25-38. PubMed ID: 8971756
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [The activity of neurons of the thalamus and brain cortex hemispheres during EEG complexes "slow wave-spindle wave" in rabbits].
    Burikov AA; Bereshpolova IuI
    Ross Fiziol Zh Im I M Sechenova; 1998 Mar; 84(3):182-90. PubMed ID: 9742591
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.