These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 646341)

  • 1. Synthesis and antibiotic properties of chloramphenicol reduction products.
    Corbett MD; Chipko BR
    Antimicrob Agents Chemother; 1978 Feb; 13(2):193-8. PubMed ID: 646341
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Pyrrole analogues of chloramphenicol. I. Synthesis and antibacterial activity of DL-threo-1-(1-methyl-4-nitropyrrole-2-yl)-2-dichloroacetamidopropane-1,3-diol.
    Krajewska D; Dabrowska M; Jakoniuk P; Rózański A
    Acta Pol Pharm; 2000; 57(3):213-21. PubMed ID: 11143711
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Synthesis and antibacterial activity of perchlorylchloramphenicol].
    Ziebell G; Gross H; Bradler G
    Pharmazie; 1983 Sep; 38(9):587-9. PubMed ID: 6647530
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Pyrrole analogues of chloramphenicol. II. Synthesis and antibacterial activity of DL-threo-1-(1-methyl-5-nitro-pyrrole-2-yl)-2-dichloroacetamidopropane-1, 3-diol.
    Krajewska D; Dabrowska M; Jakoniuk P; Rózański A
    Acta Pol Pharm; 2000 Nov; 57 Suppl():68-71. PubMed ID: 11293270
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Pyrrole analogues of chloramphenicol. III. Synthesis and antibacterial activity of DL-threo-1-(1-methylsulfonylpyrrole-3-yl)-2-dichloroacetamidopropane-1,3-diol.
    Krajewska D; Dabrowska M; Jakoniuk P; Rózański A
    Acta Pol Pharm; 2002; 59(2):127-32. PubMed ID: 12365604
    [TBL] [Abstract][Full Text] [Related]  

  • 6. In vitro activity of chloramphenicol and thiamphenicol analogs.
    Neu HC; Fu KP
    Antimicrob Agents Chemother; 1980 Aug; 18(2):311-6. PubMed ID: 7447408
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Synthesis and properties of the pyrrole analogs of chloramphenicol.
    Krajewska D; Rózański A
    J Antibiot (Tokyo); 1999 Dec; 52(12):1140-2. PubMed ID: 10695678
    [No Abstract]   [Full Text] [Related]  

  • 8. In vitro antibacterial activity of fluorinated analogs of chloramphenicol and thiamphenicol.
    Syriopoulou VP; Harding AL; Goldmann DA; Smith AL
    Antimicrob Agents Chemother; 1981 Feb; 19(2):294-7. PubMed ID: 6957162
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An overview of highly optically pure chloramphenicol bases: applications and modifications.
    Yang K; Fang H; Gong J; Su L; Xu W
    Mini Rev Med Chem; 2009 Oct; 9(11):1329-41. PubMed ID: 19929809
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Sparsophenicol: a new synthetic hybrid antibiotic inhibiting ribosomal peptide synthesis.
    Zemlicka J; Bhuta A
    J Med Chem; 1982 Oct; 25(10):1123-5. PubMed ID: 6754933
    [No Abstract]   [Full Text] [Related]  

  • 11. Effects and time-kill assessment of amoxicillin used in combination with chloramphenicol against bacteria of clinical importance.
    Olajuyigbe OO; Coopoosamy RM; Afolayan AJ
    Acta Biochim Pol; 2017; 64(4):609-613. PubMed ID: 29202138
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Chloramphenicol is a substrate for a novel nitroreductase pathway in Haemophilus influenzae.
    Smith AL; Erwin AL; Kline T; Unrath WC; Nelson K; Weber A; Howald WN
    Antimicrob Agents Chemother; 2007 Aug; 51(8):2820-9. PubMed ID: 17526758
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Esterases in serum-containing growth media counteract chloramphenicol acetyltransferase activity in vitro.
    Sohaskey CD; Barbour AG
    Antimicrob Agents Chemother; 1999 Mar; 43(3):655-60. PubMed ID: 10049283
    [TBL] [Abstract][Full Text] [Related]  

  • 14. 3-(Bromoacetyl)chloramphenicol, an active site directed inhibitor for chloramphenicol acetyltransferase.
    Kleanthous C; Cullis PM; Shaw WV
    Biochemistry; 1985 Sep; 24(20):5307-13. PubMed ID: 3865688
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Degradation of isolated deoxyribonucleic acid mediated by nitroso-chloramphenicol. Possible role in chloramphenicol-induced aplastic anemia.
    Murray T; Downey KM; Yunis AA
    Biochem Pharmacol; 1982 Jul; 31(13):2291-6. PubMed ID: 7126241
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The reactivity of chloramphenicol reduction products with DNA bases.
    Tocher JH; Edwards DI; Thomas A
    Int J Radiat Oncol Biol Phys; 1994 May; 29(2):307-10. PubMed ID: 8195024
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The identification and characterisation of chloramphenicol-aldehyde, a new human metabolite of chloramphenicol.
    Holt DE
    Eur J Drug Metab Pharmacokinet; 1995; 20(1):35-42. PubMed ID: 7588992
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Chloramphenicol-mediated DNA damage and its possible role in the inhibitory effects of chloramphenicol on DNA synthesis.
    Murray TR; Downey KM; Yunis AA
    J Lab Clin Med; 1983 Dec; 102(6):926-32. PubMed ID: 6644156
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Bu-2313, a new antibiotic complex active against anaerobes. III. Semi-synthesis of Bu-2313 A and B, and their analogs.
    Toda S; Nakagawa S; Naito T; Kawaguchi H
    J Antibiot (Tokyo); 1980 Feb; 33(2):173-81. PubMed ID: 6900630
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Hybrids of antibiotics inhibiting protein synthesis. Synthesis and biological activity.
    Zemlicka J; Fernandez-Moyano MC; Ariatti M; Zurenko GE; Grady JE; Ballesta JP
    J Med Chem; 1993 Apr; 36(9):1239-44. PubMed ID: 8487260
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.