These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

83 related articles for article (PubMed ID: 6464706)

  • 1. Prenatal and perinatal development of radial cell columns in the human auditory cortex.
    Krmpotić-Nemanić J; Kostović I; Nemanić D
    Acta Otolaryngol; 1984; 97(5-6):489-95. PubMed ID: 6464706
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cytoarchitectonic parameters of developmental capacity of the human associative auditory cortex during postnatal life.
    Krmpotić-Nemanić J; Kostović I; Bogdanović N; Fucić A; Judas M
    Acta Otolaryngol; 1988; 105(5-6):463-6. PubMed ID: 2456663
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Development of acetylcholinesterase (AChE) staining in human fetal auditory cortex.
    Krmpotić-Nemanić J; Kostović I; Kelović Z; Nemanić D
    Acta Otolaryngol; 1980; 89(3-4):388-92. PubMed ID: 6156571
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The laminar organization of the prospective auditory cortex in the human fetus (11--13.5 weeks of gestation).
    Krmpotić-Nemanić J; Kostović I; Nemanić D; Kelović Z
    Acta Otolaryngol; 1979; 87(3-4):241-6. PubMed ID: 375665
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Prenatal development of neurons in the human prefrontal cortex: I. A qualitative Golgi study.
    Mrzljak L; Uylings HB; Kostovic I; Van Eden CG
    J Comp Neurol; 1988 May; 271(3):355-86. PubMed ID: 2454966
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Prenatal development of neurons in the human prefrontal cortex. II. A quantitative Golgi study.
    Mrzljak L; Uylings HB; Kostovic I; van Eden CG
    J Comp Neurol; 1992 Feb; 316(4):485-96. PubMed ID: 1577996
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Development of the human fetal auditory cortex: growth of afferent fibres.
    Krmpotić-Nemanić J; Kostović I; Kelović Z; Nemanić D; Mrzljak L
    Acta Anat (Basel); 1983; 116(1):69-73. PubMed ID: 6858605
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cytoarchitectural and axonal maturation in human auditory cortex.
    Moore JK; Guan YL
    J Assoc Res Otolaryngol; 2001 Dec; 2(4):297-311. PubMed ID: 11833605
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Transient developmental expression of CD15 in the motor and auditory cortex of the mouse.
    Ashwell KW; Mai JK
    Brain Res Dev Brain Res; 1997 May; 100(1):143-8. PubMed ID: 9174259
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Early areal differentiation of the human cerebral cortex: entorhinal area.
    Kostović I; Petanjek Z; Judas M
    Hippocampus; 1993 Oct; 3(4):447-58. PubMed ID: 8269036
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Development of Cajal-Retzius cells in the human auditory cortex.
    Krmpotić-Nemanić J; Kostović I; Vidić Z; Nemanić D; Kostović-Knezević L
    Acta Otolaryngol; 1987; 103(5-6):477-80. PubMed ID: 3618176
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Postnatal development of the human primary motor cortex: a quantitative cytoarchitectonic analysis.
    Amunts K; Istomin V; Schleicher A; Zilles K
    Anat Embryol (Berl); 1995 Dec; 192(6):557-71. PubMed ID: 8751113
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Anatomy of layer IV in cat primary auditory cortex (AI).
    Winer JA
    J Comp Neurol; 1984 Apr; 224(4):535-67. PubMed ID: 6725630
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Radial organization of the hippocampal dentate gyrus: a Golgi, ultrastructural, and immunocytochemical analysis in the developing rhesus monkey.
    Eckenhoff MF; Rakic P
    J Comp Neurol; 1984 Feb; 223(1):1-21. PubMed ID: 6707248
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A temporal continuity to the vertical organization of the human neocortex.
    Casanova MF; Trippe J; Switala A
    Cereb Cortex; 2007 Jan; 17(1):130-7. PubMed ID: 16452639
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Neurochemical development of the hippocampal region in the fetal rhesus monkey. I. Early appearance of peptides, calcium-binding proteins, DARPP-32, and monoamine innervation in the entorhinal cortex during the first half of gestation (E47 to E90).
    Berger B; Alvarez C; Goldman-Rakic PS
    Hippocampus; 1993 Jul; 3(3):279-305. PubMed ID: 8353610
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Non-uniformity of neocortex: areal heterogeneity of NADPH-diaphorase reactive neurons in adult macaque monkeys.
    Barone P; Kennedy H
    Cereb Cortex; 2000 Feb; 10(2):160-74. PubMed ID: 10667984
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Calcium-binding proteins in the human developing brain.
    Ulfig N
    Adv Anat Embryol Cell Biol; 2002; 165():III-IX, 1-92. PubMed ID: 12236093
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Developmental history of the transient subplate zone in the visual and somatosensory cortex of the macaque monkey and human brain.
    Kostovic I; Rakic P
    J Comp Neurol; 1990 Jul; 297(3):441-70. PubMed ID: 2398142
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The non-pyramidal cells in layer III of cat primary auditory cortex (AI).
    Winer JA
    J Comp Neurol; 1984 Nov; 229(4):512-30. PubMed ID: 6501610
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.