These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

110 related articles for article (PubMed ID: 6465303)

  • 1. Structural changes in the femur with the transition to agriculture on the Georgia coast.
    Ruff CB; Larsen CS; Hayes WC
    Am J Phys Anthropol; 1984 Jun; 64(2):125-36. PubMed ID: 6465303
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Allometry between length and cross-sectional dimensions of the femur and tibia in Homo sapiens sapiens.
    Ruff CB
    Am J Phys Anthropol; 1984 Dec; 65(4):347-58. PubMed ID: 6524616
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Estimating human long bone cross-sectional geometric properties: a comparison of noninvasive methods.
    O'Neill MC; Ruff CB
    J Hum Evol; 2004 Oct; 47(4):221-35. PubMed ID: 15454334
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cross-sectional geometry of Pecos Pueblo femora and tibiae--a biomechanical investigation: II. Sex, age, side differences.
    Ruff CB; Hayes WC
    Am J Phys Anthropol; 1983 Mar; 60(3):383-400. PubMed ID: 6846511
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cross-sectional geometry of Pecos Pueblo femora and tibiae--a biomechanical investigation: I. Method and general patterns of variation.
    Ruff CB; Hayes WC
    Am J Phys Anthropol; 1983 Mar; 60(3):359-81. PubMed ID: 6846510
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Biomechanical approach to the reconstruction of activity patterns in Neolithic Western Liguria, Italy.
    Marchi D; Sparacello VS; Holt BM; Formicola V
    Am J Phys Anthropol; 2006 Dec; 131(4):447-55. PubMed ID: 16685729
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Sex-specific developmental changes in muscle size and bone geometry at the femoral shaft.
    Högler W; Blimkie CJ; Cowell CT; Inglis D; Rauch F; Kemp AF; Wiebe P; Duncan CS; Farpour-Lambert N; Woodhead HJ
    Bone; 2008 May; 42(5):982-9. PubMed ID: 18337201
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Postcranial robusticity in Homo. III: Ontogeny.
    Ruff CB; Walker A; Trinkaus E
    Am J Phys Anthropol; 1994 Jan; 93(1):35-54. PubMed ID: 8141241
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Another look at shape variation in the distal femur of Australopithecus afarensis: implications for taxonomic and functional diversity at Hadar.
    Lague MR
    J Hum Evol; 2002 May; 42(5):609-26. PubMed ID: 11969299
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Technical note: The effect of midshaft location on the error ranges of femoral and tibial cross-sectional parameters.
    Sládek V; Berner M; Galeta P; Friedl L; Kudrnová S
    Am J Phys Anthropol; 2010 Feb; 141(2):325-32. PubMed ID: 19919000
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mobility in Central European Late Eneolithic and Early Bronze Age: femoral cross-sectional geometry.
    Sládek V; Berner M; Sailer R
    Am J Phys Anthropol; 2006 Jul; 130(3):320-32. PubMed ID: 16402366
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The effects of the industrial transition on lower limb bone structure: A comparison of the inhabitants of Pecos Pueblo and present-day Indigenous peoples of New Mexico.
    Ruff CB; Wallace IJ; Toya C; Muñoz MAP; Meyer JV; Busby T; Reynolds AZ; Martinez J; Miller-Moore M; Rios R
    Am J Biol Anthropol; 2024 Jul; 184(3):e24922. PubMed ID: 38409941
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Relationships between lower limb cross-sectional geometry and mobility: the case of a Neolithic sample from Italy.
    Marchi D
    Am J Phys Anthropol; 2008 Oct; 137(2):188-200. PubMed ID: 18470890
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mobility in Upper Paleolithic and Mesolithic Europe: evidence from the lower limb.
    Holt BM
    Am J Phys Anthropol; 2003 Nov; 122(3):200-15. PubMed ID: 14533179
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Regional variation in the postcranial robusticity of late Upper Paleolithic humans.
    Shackelford LL
    Am J Phys Anthropol; 2007 May; 133(1):655-68. PubMed ID: 17295298
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The influence of body proportions on femoral and tibial midshaft shape in hunter-gatherers.
    Shaw CN; Stock JT
    Am J Phys Anthropol; 2011 Jan; 144(1):22-9. PubMed ID: 20623683
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The importance of accounting for the area of the medullary cavity in cross-sectional geometry: A test based on the femoral midshaft.
    Sparacello VS; Pearson OM
    Am J Phys Anthropol; 2010 Dec; 143(4):612-24. PubMed ID: 20623682
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Genetic variation in femur extrinsic strength in 29 different inbred strains of mice is dependent on variations in femur cross-sectional geometry and bone density.
    Wergedal JE; Sheng MH; Ackert-Bicknell CL; Beamer WG; Baylink DJ
    Bone; 2005 Jan; 36(1):111-22. PubMed ID: 15664009
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Sex- and race-related differences in cross-sectional geometry and bone density of the femoral mid-shaft in older adults.
    Taaffe DR; Lang TF; Fuerst T; Cauley JA; Nevitt MC; Harris TB
    Ann Hum Biol; 2003; 30(3):329-46. PubMed ID: 12850965
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Bilateral asymmetry in the limb bones of the chimpanzee (Pan troglodytes).
    Sarringhaus LA; Stock JT; Marchant LF; McGrew WC
    Am J Phys Anthropol; 2005 Dec; 128(4):840-5. PubMed ID: 16110479
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.