These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

108 related articles for article (PubMed ID: 6466059)

  • 21. The effect of contact stress on cartilage friction, deformation and wear.
    Lizhang J; Fisher J; Jin Z; Burton A; Williams S
    Proc Inst Mech Eng H; 2011 May; 225(5):461-75. PubMed ID: 21755776
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Three-dimensional dynamic hip contact area and pressure distribution during activities of daily living.
    Yoshida H; Faust A; Wilckens J; Kitagawa M; Fetto J; Chao EY
    J Biomech; 2006; 39(11):1996-2004. PubMed ID: 16120442
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Consequences of transverse acetabular fracture malreduction on load transmission across the hip joint.
    Hak DJ; Hamel AJ; Bay BK; Sharkey NA; Olson SA
    J Orthop Trauma; 1998 Feb; 12(2):90-100. PubMed ID: 9503297
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Determination of real-time in-vivo cartilage contact deformation in the ankle joint.
    Li G; Wan L; Kozanek M
    J Biomech; 2008; 41(1):128-36. PubMed ID: 17697682
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Impact of hip anatomical variations on the cartilage stress: a finite element analysis towards the biomechanical exploration of the factors that may explain primary hip arthritis in morphologically normal subjects.
    Sánchez Egea AJ; Valera M; Parraga Quiroga JM; Proubasta I; Noailly J; Lacroix D
    Clin Biomech (Bristol, Avon); 2014 Apr; 29(4):444-50. PubMed ID: 24530154
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Finite element analysis of the ovine hip: development, results and comparison with the human hip.
    Mazoochian F; Hölzer A; Jalali J; Schmidutz F; Schröder C; Woiczinski M; Maierl J; Augat P; Jansson V
    Vet Comp Orthop Traumatol; 2012; 25(4):301-6. PubMed ID: 22534728
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Fluid load support and contact mechanics of hemiarthroplasty in the natural hip joint.
    Pawaskar SS; Ingham E; Fisher J; Jin Z
    Med Eng Phys; 2011 Jan; 33(1):96-105. PubMed ID: 20951626
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The acetabular labrum: a review of its function.
    Bsat S; Frei H; Beaulé PE
    Bone Joint J; 2016 Jun; 98-B(6):730-5. PubMed ID: 27235512
    [TBL] [Abstract][Full Text] [Related]  

  • 29. In vitro measurement of articular cartilage deformations in the intact human hip joint under load.
    Armstrong CG; Bahrani AS; Gardner DL
    J Bone Joint Surg Am; 1979 Jul; 61(5):744-55. PubMed ID: 457718
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The role of the acetabular labrum and the transverse acetabular ligament in load transmission in the hip.
    Konrath GA; Hamel AJ; Olson SA; Bay B; Sharkey NA
    J Bone Joint Surg Am; 1998 Dec; 80(12):1781-8. PubMed ID: 9875936
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Contact pressures in the human hip joint.
    Afoke NY; Byers PD; Hutton WC
    J Bone Joint Surg Br; 1987 Aug; 69(4):536-41. PubMed ID: 3611154
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Evaluation of the magnitude of hip joint deformation in subjects with avascular necrosis of the hip joint during walking with and without Scottish Rite orthosis.
    Karimi MT; Mohammadi A; Ebrahimi MH; McGarry A
    Med Eng Phys; 2017 Feb; 40():110-116. PubMed ID: 27986380
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Effect of 3D physiological loading and motion on elastohydrodynamic lubrication of metal-on-metal total hip replacements.
    Gao L; Wang F; Yang P; Jin Z
    Med Eng Phys; 2009 Jul; 31(6):720-9. PubMed ID: 19269879
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Hypothesis of regulation of hip joint cartilage activity by mechanical loading.
    Daniel M; Sochor M; Iglic A; Kralj-Iglic V
    Med Hypotheses; 2003 Jun; 60(6):936-7. PubMed ID: 12699729
    [TBL] [Abstract][Full Text] [Related]  

  • 35. An in vitro investigation of the acetabular labral seal in hip joint mechanics.
    Ferguson SJ; Bryant JT; Ganz R; Ito K
    J Biomech; 2003 Feb; 36(2):171-8. PubMed ID: 12547354
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Morphomechanics of the humero-ulnar joint: II. Concave incongruity determines the distribution of load and subchondral mineralization.
    Eckstein F; Merz B; Müller-Gerbl M; Holzknecht N; Pleier M; Putz R
    Anat Rec; 1995 Nov; 243(3):327-35. PubMed ID: 8579252
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Direct measurement of local pressures in the cadaveric human hip joint during simulated level walking.
    Adams D; Swanson SA
    Ann Rheum Dis; 1985 Oct; 44(10):658-66. PubMed ID: 4051586
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A theoretical solution for the frictionless rolling contact of cylindrical biphasic articular cartilage layers.
    Ateshian GA; Wang H
    J Biomech; 1995 Nov; 28(11):1341-55. PubMed ID: 8522547
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Labral reconstruction with iliotibial band autografts and semitendinosus allografts improves hip joint contact area and contact pressure: an in vitro analysis.
    Lee S; Wuerz TH; Shewman E; McCormick FM; Salata MJ; Philippon MJ; Nho SJ
    Am J Sports Med; 2015 Jan; 43(1):98-104. PubMed ID: 25361860
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The influence of the acetabular labrum on hip joint cartilage consolidation: a poroelastic finite element model.
    Ferguson SJ; Bryant JT; Ganz R; Ito K
    J Biomech; 2000 Aug; 33(8):953-60. PubMed ID: 10828325
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.