These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

108 related articles for article (PubMed ID: 6466059)

  • 41. [The clinical relevance of biomechanical analysis of the hip area].
    Kummer B
    Z Orthop Ihre Grenzgeb; 1991; 129(4):285-94. PubMed ID: 1833916
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Influence of altered gait patterns on the hip joint contact forces.
    Carriero A; Zavatsky A; Stebbins J; Theologis T; Lenaerts G; Jonkers I; Shefelbine SJ
    Comput Methods Biomech Biomed Engin; 2014; 17(4):352-9. PubMed ID: 22587414
    [TBL] [Abstract][Full Text] [Related]  

  • 43. An analysis of hip joint loading during walking, running, and skiing.
    van den Bogert AJ; Read L; Nigg BM
    Med Sci Sports Exerc; 1999 Jan; 31(1):131-42. PubMed ID: 9927021
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Biomechanical response of lumbar facet joints under follower preload: a finite element study.
    Du CF; Yang N; Guo JC; Huang YP; Zhang C
    BMC Musculoskelet Disord; 2016 Mar; 17():126. PubMed ID: 26980002
    [TBL] [Abstract][Full Text] [Related]  

  • 45. A contribution to the functional morphology of articular surfaces.
    Tillmann B
    Norm Pathol Anat (Stuttg); 1978; 34():1-50. PubMed ID: 693316
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Load-bearing pattern of the ankle joint. Contact area and pressure distribution.
    Kimizuka M; Kurosawa H; Fukubayashi T
    Arch Orthop Trauma Surg (1978); 1980; 96(1):45-9. PubMed ID: 7377925
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Contact pressures in the human hip joint measured in vivo.
    Hodge WA; Fijan RS; Carlson KL; Burgess RG; Harris WH; Mann RW
    Proc Natl Acad Sci U S A; 1986 May; 83(9):2879-83. PubMed ID: 3458248
    [TBL] [Abstract][Full Text] [Related]  

  • 48. A computer simulation study of normal and abnormal hip joint contact pressure.
    Genda E; Konishi N; Hasegawa Y; Miura T
    Arch Orthop Trauma Surg; 1995; 114(4):202-6. PubMed ID: 7662474
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Stress distribution and consolidation in cartilage constituents is influenced by cyclic loading and osteoarthritic degeneration.
    Speirs AD; Beaulé PE; Ferguson SJ; Frei H
    J Biomech; 2014 Jul; 47(10):2348-53. PubMed ID: 24856886
    [TBL] [Abstract][Full Text] [Related]  

  • 50. The contact area and pressure distribution pattern of the knee. A study of normal and osteoarthrotic knee joints.
    Fukubayashi T; Kurosawa H
    Acta Orthop Scand; 1980 Dec; 51(6):871-9. PubMed ID: 6894212
    [TBL] [Abstract][Full Text] [Related]  

  • 51. The effects of various load paths and different loads on the load transfer characteristics of the wrist.
    Viegas SF; Patterson R; Peterson P; Roefs J; Tencer A; Choi S
    J Hand Surg Am; 1989 May; 14(3):458-65. PubMed ID: 2738332
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Statically equivalent load and support conditions produce different hip joint contact pressures and periacetabular strains.
    Bay BK; Hamel AJ; Olson SA; Sharkey NA
    J Biomech; 1997 Feb; 30(2):193-6. PubMed ID: 9001941
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Deformation and recovery of cartilage in the intact hip under physiological loads using 7T MRI.
    Greaves LL; Gilbart MK; Yung A; Kozlowski P; Wilson DR
    J Biomech; 2009 Feb; 42(3):349-54. PubMed ID: 19147144
    [TBL] [Abstract][Full Text] [Related]  

  • 54. A method to investigate the biomechanical alterations in Perthes' disease by hip joint contact modeling.
    Salmingo RA; Skytte TL; Traberg MS; Mikkelsen LP; Henneberg KÅ; Wong C
    Biomed Mater Eng; 2017; 28(4):443-456. PubMed ID: 28869431
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Cartilage stresses in the human hip joint.
    Macirowski T; Tepic S; Mann RW
    J Biomech Eng; 1994 Feb; 116(1):10-8. PubMed ID: 8189704
    [TBL] [Abstract][Full Text] [Related]  

  • 56. A preliminary study of joint surface changes after an intraarticular fracture: a sheep model of a tibia fracture with weight bearing after internal fixation.
    Trumble T; Allan CH; Miyano J; Clark JM; Ott S; Jones DE; Fernacola P; Magnusson M; Tencer A
    J Orthop Trauma; 2001; 15(5):326-32. PubMed ID: 11433136
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Relation of coxarthrosis to stresses and morphogenesis. A finite element analysis.
    Carter DR; Rapperport DJ; Fyhrie DP; Schurman DJ
    Acta Orthop Scand; 1987 Dec; 58(6):611-9. PubMed ID: 3442205
    [TBL] [Abstract][Full Text] [Related]  

  • 58. The influence of the acetabular labrum seal, intact articular superficial zone and synovial fluid thixotropy on squeeze-film lubrication of a spherical synovial joint.
    Hlavácek M
    J Biomech; 2002 Oct; 35(10):1325-35. PubMed ID: 12231278
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Load transfer and fixation mode of press-fit acetabular sockets.
    Widmer KH; Zurfluh B; Morscher EW
    J Arthroplasty; 2002 Oct; 17(7):926-35. PubMed ID: 12375254
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Comparison of glenohumeral contact pressures and contact areas after posterior glenoid reconstruction with an iliac crest bone graft or distal tibial osteochondral allograft.
    Frank RM; Shin J; Saccomanno MF; Bhatia S; Shewman E; Bach BR; Wang VM; Cole BJ; Provencher MT; Verma NN; Romeo AA
    Am J Sports Med; 2014 Nov; 42(11):2574-82. PubMed ID: 25193887
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.