BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 6466294)

  • 1. Oxidative interactions between haemoglobin and membrane lipid. A liposome model.
    Szebeni J; Winterbourn CC; Carrell RW
    Biochem J; 1984 Jun; 220(3):685-92. PubMed ID: 6466294
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Lipid peroxidation and haemoglobin degradation in red blood cells exposed to t-butyl hydroperoxide. The relative roles of haem- and glutathione-dependent decomposition of t-butyl hydroperoxide and membrane lipid hydroperoxides in lipid peroxidation and haemolysis.
    Trotta RJ; Sullivan SG; Stern A
    Biochem J; 1983 Jun; 212(3):759-72. PubMed ID: 6882393
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Lipid peroxidation in hemoglobin-containing liposomes. Effects of membrane phospholipid composition and cholesterol content.
    Szebeni J; Toth K
    Biochim Biophys Acta; 1986 May; 857(2):139-45. PubMed ID: 3635413
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Lipid peroxidation and haemoglobin degradation in red blood cells exposed to t-butyl hydroperoxide. Effects of the hexose monophosphate shunt as mediated by glutathione and ascorbate.
    Trotta RJ; Sullivan SG; Stern A
    Biochem J; 1982 May; 204(2):405-15. PubMed ID: 7115337
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Modulation of oxidative stability of haemoglobin inside liposome-encapsulated haemoglobin.
    Awasthi V; Yadav VR; Goins B; Phillips WT
    J Microencapsul; 2013; 30(5):471-8. PubMed ID: 23231644
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Preparation and characterization of liposome-encapsulated haemoglobin by a freeze-thaw method.
    Liu L; Yonetani T
    J Microencapsul; 1994; 11(4):409-21. PubMed ID: 7931940
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mechanism of oxyhaemoglobin breakdown on reaction with acetylphenylhydrazine.
    French JK; Winterbourn CC; Carrell RW
    Biochem J; 1978 Jul; 173(1):19-26. PubMed ID: 210765
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The role of cytochrome c and mitochondrial catalase in hydroperoxide-induced heart mitochondrial lipid peroxidation.
    Radi R; Bush KM; Freeman BA
    Arch Biochem Biophys; 1993 Jan; 300(1):409-15. PubMed ID: 8380970
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Contributions of superoxide, hydrogen peroxide, and transition metal ions to auto-oxidation of the favism-inducing pyrimidine aglycone, divicine, and its reactions with haemoglobin.
    Winterbourn CC; Benatti U; De Flora A
    Biochem Pharmacol; 1986 Jun; 35(12):2009-15. PubMed ID: 3013207
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Reactions of Adriamycin with haemoglobin. Superoxide dismutase indirectly inhibits reactions of the Adriamycin semiquinone.
    Bates DA; Winterbourn CC
    Biochem J; 1982 Apr; 203(1):155-60. PubMed ID: 6285890
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Haemoglobin-induced oxidative stress is associated with both endogenous peroxidase activity and H2O2 generation from polyunsaturated fatty acids.
    Cheng TM; Mao SJ; Lai ST; Chang CC; Yang MC; Chen NC; Chou SC; Pan JP
    Free Radic Res; 2011 Mar; 45(3):303-16. PubMed ID: 21034361
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Protection and recycling of alpha-tocopherol in human erythrocytes by intracellular ascorbic acid.
    May JM; Qu ZC; Mendiratta S
    Arch Biochem Biophys; 1998 Jan; 349(2):281-9. PubMed ID: 9448716
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Oxidation and denaturation of hemoglobin encapsulated in liposomes.
    Szebeni J; Breuer JH; Szelenyi JG; Bathori G; Lelkes G; Hollan SR
    Biochim Biophys Acta; 1984 Mar; 798(1):60-7. PubMed ID: 6704423
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The reaction of menadione with haemoglobin. Mechanism and effect of superoxide dismutase.
    Winterbourn CC; French JK; Claridge RF
    Biochem J; 1979 Jun; 179(3):665-73. PubMed ID: 475774
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Thalassaemic erythrocytes: cellular suicide arising from iron and glutathione-dependent oxidation reactions?
    Scott MD; Eaton JW
    Br J Haematol; 1995 Dec; 91(4):811-9. PubMed ID: 8547123
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Oxidative interactions between hemoglobin and egg lecithin liposomes.
    Pietrzak WS; Miller IF
    Biomater Artif Cells Artif Organs; 1989; 17(5):563-81. PubMed ID: 2627576
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Interaction of nitrobenzoates with haemoglobin in red blood cells and a haemolysate.
    Norambuena E; Videla LA; Lissi EA
    Hum Exp Toxicol; 1994 May; 13(5):345-51. PubMed ID: 8043316
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The effect of lead on hemoglobin-catalyzed lipid peroxidation.
    Ribarov SR; Benov LC; Benchev IC
    Biochim Biophys Acta; 1981 Jun; 664(3):453-9. PubMed ID: 7272316
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Mechanism of formation of malonic dialdehyde during liposome interaction with cells].
    Konev VV; Popov GA
    Biokhimiia; 1988 Sep; 53(9):1439-42. PubMed ID: 3203106
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dynamics of xanthine oxidase- and Fe(3+)-ADP-dependent lipid peroxidation in negatively charged phospholipid vesicles.
    Fukuzawa K; Soumi K; Iemura M; Goto S; Tokumura A
    Arch Biochem Biophys; 1995 Jan; 316(1):83-91. PubMed ID: 7840682
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.