These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

104 related articles for article (PubMed ID: 6466485)

  • 1. Amino acid absorption in lepidopteran larvae midgut.
    Giordana B; Hanozet GM; Sacchi VF; Parenti P; Guerritore A
    Boll Soc Ital Biol Sper; 1984 May; 60 Suppl 4():183-8. PubMed ID: 6466485
    [No Abstract]   [Full Text] [Related]  

  • 2. K+-dependent phenylalanine uptake in membrane vesicels isolated from the midgut of Philosamia cynthia larvae.
    Hanozet GM; Giordana B; Sacchi VF
    Biochim Biophys Acta; 1980 Mar; 596(3):481-6. PubMed ID: 7362826
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cationic pathway of pH regulation in larvae of Anopheles gambiae.
    Okech BA; Boudko DY; Linser PJ; Harvey WR
    J Exp Biol; 2008 Mar; 211(Pt 6):957-68. PubMed ID: 18310121
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Developmental and hormonal regulation of midgut remodeling in a lepidopteran insect, Heliothis virescens.
    Parthasarathy R; Palli SR
    Mech Dev; 2007 Jan; 124(1):23-34. PubMed ID: 17107775
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nutrient absorption by Aphidius ervi larvae.
    Caccia S; Leonardi MG; Casartelli M; Grimaldi A; de Eguileor M; Pennacchio F; Giordana B
    J Insect Physiol; 2005 Nov; 51(11):1183-92. PubMed ID: 16085087
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Absorption of albumin by the midgut of a lepidopteran larva.
    Casartelli M; Corti P; Giovanna Leonardi M; Fiandra L; Burlini N; Pennacchio F; Giordana B
    J Insect Physiol; 2005 Aug; 51(8):933-40. PubMed ID: 15935372
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Amino acid transport systems in intestinal brush-border membranes from lepidopteran larvae.
    Giordana B; Sacchi VF; Parenti P; Hanozet GM
    Am J Physiol; 1989 Sep; 257(3 Pt 2):R494-500. PubMed ID: 2675638
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Kinetics of leucine transport in brush border membrane vesicles from lepidopteran larvae midgut.
    Parenti P; Villa M; Hanozet GM
    J Biol Chem; 1992 Aug; 267(22):15391-7. PubMed ID: 1639784
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Amino acid transport in insects.
    Wolfersberger MG
    Annu Rev Entomol; 2000; 45():111-20. PubMed ID: 10761572
    [TBL] [Abstract][Full Text] [Related]  

  • 10. High pH in the ectoperitrophic space of the larval lepidopteran midgut.
    Gringorten JL; Crawford DN; Harvey WR
    J Exp Biol; 1993 Oct; 183():353-9. PubMed ID: 8245766
    [No Abstract]   [Full Text] [Related]  

  • 11. Comparative kinetics of fatty acid-amino acid conjugate elicitor biosynthesis by midgut tissue microsomes of Lepidopterous caterpillar larvae.
    Lait CG; Lobaido MJ; Wiester AJ; Kossak S; Tumlinson JH
    Arch Insect Biochem Physiol; 2010 Dec; 75(4):264-74. PubMed ID: 21104884
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Effect of selected fats on the digestion and absorption of amino acids in the alimentary tract].
    Ziemlański S; Cieślakowa D; Palaszewska M
    Rocz Panstw Zakl Hig; 1972; 23(2):173-82. PubMed ID: 5033609
    [No Abstract]   [Full Text] [Related]  

  • 13. Preparation and partial characterization of amino acid transporting brush border membrane vesicles from the larval midgut of the gypsy moth (Lymantria dispar).
    Wolfersberger MG
    Arch Insect Biochem Physiol; 1993; 24(3):139-47. PubMed ID: 7903055
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Lepidopteran larval midgut during prepupal instar: digestion or self-digestion?
    Tettamanti G; Grimaldi A; Pennacchio F; de Eguileor M
    Autophagy; 2007; 3(6):630-1. PubMed ID: 17786039
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Leucine transport in membrane vesicles from Chironomus riparius larvae displays a mélange of crown-group features.
    Parenti P; Forcella M; Pugliese A; Giacchini R; Rossaro B; Hanozet GM
    Arch Insect Biochem Physiol; 2001 Oct; 48(2):51-62. PubMed ID: 11568964
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A new prenylated flavone from Artocarpus champeden inhibits the K(+)-dependent amino acid transport in Bombyx mori midgut.
    Parenti P; Pizzigoni A; Hanozet G; Hakim EH; Makmur L; Achmad SA; Giordana B
    Biochem Biophys Res Commun; 1998 Mar; 244(2):445-8. PubMed ID: 9514951
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Characterization and cDNA cloning of midgut carboxypeptidases from Trichoplusia ni.
    Wang P; Li G; Kain W
    Insect Biochem Mol Biol; 2004 Aug; 34(8):831-43. PubMed ID: 15262287
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Implications for the functions of the four known midgut differentiation factors: An immunohistologic study of Heliothis virescens midgut.
    Loeb MJ; Coronel N; Natsukawa D; Takeda M
    Arch Insect Biochem Physiol; 2004 May; 56(1):7-20. PubMed ID: 15101062
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of molecular mass and hydrophobicity on transport rates through non-specific pathways of the silkworm larva midgut.
    Hamamoto H; Kamura K; Razanajatovo IM; Murakami K; Santa T; Sekimizu K
    Int J Antimicrob Agents; 2005 Jul; 26(1):38-42. PubMed ID: 15963696
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Enzymatic properties of alpha- and beta-glocusidases extracted from midgut and salivary glands of rice striped stem borer, Chilo suppressalis Walker (Lepidoptera: Pyralidae).
    Zibaee A; Bandani AR; Ramzi S
    C R Biol; 2009 Jul; 332(7):633-41. PubMed ID: 19523603
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.