These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

92 related articles for article (PubMed ID: 6466650)

  • 1. Ribonuclease A: carbon-13 nuclear magnetic resonance assignments, binding sites, and conformational flexibility.
    Howarth OW; Lian LY
    Biochemistry; 1984 Jul; 23(15):3515-21. PubMed ID: 6466650
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Correlation proton magnetic resonance studies at 250 MHz of bovine pancreatic ribonuclease. II. pH and inhibitor-induced conformational transitions affecting histidine-48 and one tyrosine residue of ribonuclease A.
    Markley JL
    Biochemistry; 1975 Aug; 14(16):554-61. PubMed ID: 240391
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Hen egg white lysozyme: carbon-13 nuclear magnetic resonance assignments and dependence of conformational flexibility on inhibitor binding and temperature.
    Howarth OW; Lian LY
    Biochemistry; 1984 Jul; 23(15):3522-6. PubMed ID: 6466651
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Bivalent-metal binding to CheY protein. Effect on protein conformation.
    Kar L; Matsumura P; Johnson ME
    Biochem J; 1992 Oct; 287 ( Pt 2)(Pt 2):521-31. PubMed ID: 1445211
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nuclear magnetic resonance and neutron diffraction studies of the complex of ribonuclease A with uridine vanadate, a transition-state analogue.
    Borah B; Chen CW; Egan W; Miller M; Wlodawer A; Cohen JS
    Biochemistry; 1985 Apr; 24(8):2058-67. PubMed ID: 4016100
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Unexpected binding mode for 2'-phosphoadenosine-based nucleotide inhibitors in complex with human angiogenin revealed by heteronuclear NMR spectroscopy.
    Tonan K; Xu P; Jenkins JL; Russo A; Shapiro R; Ni F
    Biochemistry; 2003 Sep; 42(38):11137-49. PubMed ID: 14503864
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A 31P MAS NMR study of cytidine 2'-phosphate bound to ribonuclease A in the crystalline state.
    Dobson CM; Lian LY
    FEBS Lett; 1987 Dec; 225(1-2):183-7. PubMed ID: 3691801
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nuclear magnetic resonance studies on calmodulin: calcium-induced conformational change.
    Ikura M; Hiraoki T; Hikichi K; Mikuni T; Yazawa M; Yagi K
    Biochemistry; 1983 May; 22(10):2573-9. PubMed ID: 6683101
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cobalt-cytochrome c. II. Magnetic resonance spectra and conformational transitions.
    Dickinson LC; Chien JC
    Biochemistry; 1975 Aug; 14(16):3534-42. PubMed ID: 240381
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Raman spectroscopy of DNA-metal complexes. I. Interactions and conformational effects of the divalent cations: Mg, Ca, Sr, Ba, Mn, Co, Ni, Cu, Pd, and Cd.
    Duguid J; Bloomfield VA; Benevides J; Thomas GJ
    Biophys J; 1993 Nov; 65(5):1916-28. PubMed ID: 8298021
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Carbon-13 NMR investigations on ribonuclease A.
    Santoro J; Juretschke HP; Rüterjans H
    Biochim Biophys Acta; 1979 Jun; 578(2):346-56. PubMed ID: 486530
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Characterization of the histidine proton nuclear magnetic resonances of a semisynthetic ribonuclease.
    Doscher MS; Martin PD; Edwards BF
    Biochemistry; 1983 Aug; 22(17):4125-31. PubMed ID: 6615822
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The role of lysine-41 in ribonuclease A studied by proton-magnetic-resonance spectroscopy of guanidinated ribonuclease A.
    Brown LR; Bradbury JH
    Eur J Biochem; 1976 Sep; 68(1):227-35. PubMed ID: 9284
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structure of phosphate-free ribonuclease A refined at 1.26 A.
    Wlodawer A; Svensson LA; Sjölin L; Gilliland GL
    Biochemistry; 1988 Apr; 27(8):2705-17. PubMed ID: 3401445
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Conformational flexibility of enzyme active sites.
    Tsou CL
    Science; 1993 Oct; 262(5132):380-1. PubMed ID: 8211158
    [No Abstract]   [Full Text] [Related]  

  • 16. Molecular mechanism for the denaturation of proteins by urea.
    Almarza J; Rincon L; Bahsas A; Brito F
    Biochemistry; 2009 Aug; 48(32):7608-13. PubMed ID: 19580327
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Interaction of cytidine 3'-monophosphate and uridine 3'-monophosphate with ribonuclease a at the denaturation temperature.
    Schwarz FP
    Biochemistry; 1988 Nov; 27(22):8429-36. PubMed ID: 3242592
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Conformational flexibility of enzyme active sites].
    Zou CL
    Sheng Li Ke Xue Jin Zhan; 2001 Jan; 32(1):7-12. PubMed ID: 12545769
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Intermediates in the refolding of ribonuclease at subzero temperatures. 2. Monitoring by inhibitor binding and catalytic activity.
    Biringer RG; Austin CM; Fink AL
    Biochemistry; 1988 Jan; 27(1):311-5. PubMed ID: 2831957
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Limited proteolysis of ribonuclease A with thermolysin in trifluoroethanol.
    Polverino de Laureto P; Scaramella E; De Filippis V; Bruix M; Rico M; Fontana A
    Protein Sci; 1997 Apr; 6(4):860-72. PubMed ID: 9098896
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.