These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
23. Siderophore-mediated uptake of Fe3+ by the plant growth-stimulating Pseudomonas putida strain WCS358 and by other rhizosphere microorganisms. de Weger LA; van Arendonk JJ; Recourt K; van der Hofstad GA; Weisbeek PJ; Lugtenberg B J Bacteriol; 1988 Oct; 170(10):4693-8. PubMed ID: 2971647 [TBL] [Abstract][Full Text] [Related]
24. Cloning and characterization of a gene encoding an outer membrane protein required for siderophore-mediated uptake of Fe3+ in Pseudomonas putida WCS358. Marugg JD; de Weger LA; Nielander HB; Oorthuizen M; Recourt K; Lugtenberg B; van der Hofstad GA; Weisbeek PJ J Bacteriol; 1989 May; 171(5):2819-26. PubMed ID: 2540157 [TBL] [Abstract][Full Text] [Related]
25. Effects of iron(III) analogs on growth and pseudobactin synthesis in a chromiumtolerant Pseudomonas isolate. Fekete FA; Barton LL Biol Met; 1991; 4(4):211-6. PubMed ID: 1777356 [TBL] [Abstract][Full Text] [Related]
26. Transcriptional regulation of pseudobactin synthesis in the plant growth-promoting Pseudomonas B10. Leoni L; Ambrosi C; Petrucca A; Visca P FEMS Microbiol Lett; 2002 Mar; 208(2):219-25. PubMed ID: 11959440 [TBL] [Abstract][Full Text] [Related]
27. Isolation and structure determination of new siderophore tsukubachelin B from Streptomyces sp. TM-74. Kodani S; Kobayakawa F; Hidaki M Nat Prod Res; 2013; 27(9):775-81. PubMed ID: 22712554 [TBL] [Abstract][Full Text] [Related]
28. Bacterial iron transport: 1H NMR determination of the three-dimensional structure of the gallium complex of pyoverdin G4R, the peptidic siderophore of Pseudomonas putida G4R. Atkinson RA; Salah El Din AL; Kieffer B; Lefèvre JF; Abdallah MA Biochemistry; 1998 Nov; 37(45):15965-73. PubMed ID: 9843403 [TBL] [Abstract][Full Text] [Related]
29. Regulation of the iron uptake genes in Pseudomonas fluorescens M114 by pseudobactin M114: the pbrA sigma factor gene does not mediate the siderophore regulatory response. Callanan M; Sexton R; Dowling DN; O'Gara F FEMS Microbiol Lett; 1996 Oct; 144(1):61-6. PubMed ID: 8870253 [TBL] [Abstract][Full Text] [Related]
30. Characterization of Fluorescent Siderophore-Mediated Iron Uptake in Pseudomonas sp. Strain M114: Evidence for the Existence of an Additional Ferric Siderophore Receptor. Morris J; O'sullivan DJ; Koster M; Leong J; Weisbeek PJ; O'gara F Appl Environ Microbiol; 1992 Feb; 58(2):630-5. PubMed ID: 16348650 [TBL] [Abstract][Full Text] [Related]
31. A simple assay for fluorescent siderophores produced by Pseudomonas species and an efficient isolation of pseudobactin. Nowak-Thompson B; Gould SJ Biometals; 1994 Jan; 7(1):20-4. PubMed ID: 8118168 [TBL] [Abstract][Full Text] [Related]
32. A low-temperature heteronuclear NMR study of two exchanging conformations of metal-bound pyoverdin PaA from Pseudomonas aeruginosa. Tzou DL; Wasielewski E; Abdallah MA; Kieffer B; Atkinson RA Biopolymers; 2005 Oct; 79(3):139-49. PubMed ID: 16078193 [TBL] [Abstract][Full Text] [Related]
33. Genetic organization and transcriptional analysis of a major gene cluster involved in siderophore biosynthesis in Pseudomonas putida WCS358. Marugg JD; Nielander HB; Horrevoets AJ; van Megen I; van Genderen I; Weisbeek PJ J Bacteriol; 1988 Apr; 170(4):1812-9. PubMed ID: 2450869 [TBL] [Abstract][Full Text] [Related]
34. Characterization of fluorescent and nonfluorescent peptide siderophores produced by Pseudomonas syringae strains and their potential use in strain identification. Bultreys A; Gheysen I; Maraite H; de Hoffmann E Appl Environ Microbiol; 2001 Apr; 67(4):1718-27. PubMed ID: 11282626 [TBL] [Abstract][Full Text] [Related]
35. Siderochromes from Pseudomonas fluorescens. II. Structural homology as revealed by NMR spectroscopy. Philson SB; Llinás M J Biol Chem; 1982 Jul; 257(14):8086-90. PubMed ID: 6211451 [TBL] [Abstract][Full Text] [Related]
36. Structure of syringotoxin, a bioactive metabolite of Pseudomonas syringae pv. syringae. Ballio A; Bossa F; Collina A; Gallo M; Iacobellis NS; Paci M; Pucci P; Scaloni A; Segre A; Simmaco M FEBS Lett; 1990 Sep; 269(2):377-80. PubMed ID: 2401362 [TBL] [Abstract][Full Text] [Related]
37. Erythrochelin--a hydroxamate-type siderophore predicted from the genome of Saccharopolyspora erythraea. Robbel L; Knappe TA; Linne U; Xie X; Marahiel MA FEBS J; 2010 Feb; 277(3):663-76. PubMed ID: 20050920 [TBL] [Abstract][Full Text] [Related]
38. Cepabactin from Pseudomonas cepacia, a new type of siderophore. Meyer JM; Hohnadel D; Hallé F J Gen Microbiol; 1989 Jun; 135(6):1479-87. PubMed ID: 2533244 [TBL] [Abstract][Full Text] [Related]
39. Loihichelins A-F, a suite of amphiphilic siderophores produced by the marine bacterium Halomonas LOB-5. Homann VV; Sandy M; Tincu JA; Templeton AS; Tebo BM; Butler A J Nat Prod; 2009 May; 72(5):884-8. PubMed ID: 19320498 [TBL] [Abstract][Full Text] [Related]
40. Structure of triornicin, a new siderophore. Frederick CB; Bentley MD; Shive W Biochemistry; 1981 Apr; 20(9):2436-8. PubMed ID: 7195281 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]