BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 6466657)

  • 1. Asymmetry of the Na+-succinate cotransporter in rabbit renal brush-border membranes.
    Hirayama B; Wright EM
    Biochim Biophys Acta; 1984 Aug; 775(1):17-21. PubMed ID: 6466657
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Kinetics of sodium succinate cotransport across renal brush-border membranes.
    Wright SH; Hirayama B; Kaunitz JD; Kippen I; Wright EM
    J Biol Chem; 1983 May; 258(9):5456-62. PubMed ID: 6853527
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Coupling between sodium and succinate transport across renal brush border membrane vesicles.
    Hirayama B; Wright EM
    Pflugers Arch; 1986; 407 Suppl 2():S174-9. PubMed ID: 3822764
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of cadmium on Na-Pi cotransport kinetics in rabbit renal brush-border membrane vesicles.
    Park K; Kim KR; Kim JY; Park YS
    Toxicol Appl Pharmacol; 1997 Aug; 145(2):255-9. PubMed ID: 9266797
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Electrophysiology of succinate transport across rabbit renal brush border membranes.
    Schell RE; Wright EM
    J Physiol; 1985 Mar; 360():95-104. PubMed ID: 3989724
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Histidyl residues at the active site of the Na/succinate co-transporter in rabbit renal brush borders.
    Bindslev N; Wright EM
    J Membr Biol; 1984; 81(2):159-70. PubMed ID: 6541702
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dicarboxylate transport in renal basolateral and brush-border membrane vesicles.
    Kim YK; Jung JS; Lee SH
    Can J Physiol Pharmacol; 1992 Jan; 70(1):106-12. PubMed ID: 1581843
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Stoichiometry of Na+-succinate cotransport in renal brush-border membranes.
    Wright SH; Kippen I; Wright EM
    J Biol Chem; 1982 Feb; 257(4):1773-8. PubMed ID: 7056744
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Sensitivity of renal brush-border Na+-cotransport systems to anions.
    Levine R; Hirayama B; Wright EM
    Biochim Biophys Acta; 1984 Jan; 769(2):508-10. PubMed ID: 6696897
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Sodium-dependent succinate transport in renal outer cortical brush border membrane vesicles.
    Fukuhara Y; Turner RJ
    Am J Physiol; 1983 Sep; 245(3):F374-81. PubMed ID: 6225342
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Kinetic asymmetry of renal Na+-L-lactate cotransport. Characteristic parameters and evidence for a ping pong mechanism of the trans-stimulating exchange by pyruvate.
    Mengual R; Schlageter MH; Sudaka P
    J Biol Chem; 1990 Jan; 265(1):292-9. PubMed ID: 2294107
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Pathways for carboxylic acid transport by rabbit renal brush border membrane vesicles.
    Nord E; Wright SH; Kippen I; Wright EM
    Am J Physiol; 1982 Nov; 243(5):F456-62. PubMed ID: 7137347
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Succinate and citrate transport in renal basolateral and brush-border membranes.
    Wright SH; Wunz TM
    Am J Physiol; 1987 Sep; 253(3 Pt 2):F432-9. PubMed ID: 3631279
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Renal brush-border membrane Na(+)-sulfate cotransport: stimulation by thyroid hormone.
    Tenenhouse HS; Lee J; Harvey N
    Am J Physiol; 1991 Sep; 261(3 Pt 2):F420-6. PubMed ID: 1832265
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Biotin uptake mechanisms in brush-border and basolateral membrane vesicles isolated from rabbit kidney cortex.
    Podevin RA; Barbarat B
    Biochim Biophys Acta; 1986 Apr; 856(3):471-81. PubMed ID: 3964692
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Sodium-pyrazinoate cotransport in rabbit renal brush border membrane vesicles.
    Manganel M; Roch-Ramel F; Murer H
    Am J Physiol; 1985 Sep; 249(3 Pt 2):F400-8. PubMed ID: 4037092
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Reconstitution and characterization of a Na+/Pi co-transporter protein from rabbit kidney brush-border membranes.
    Debiec H; Lorenc R; Ronco PM
    Biochem J; 1992 Aug; 286 ( Pt 1)(Pt 1):97-102. PubMed ID: 1520289
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Allosterism and Na(+)-D-glucose cotransport kinetics in rabbit jejunal vesicles: compatibility with mixed positive and negative cooperativities in a homo- dimeric or tetrameric structure and experimental evidence for only one transport protein involved.
    Chenu C; Berteloot A
    J Membr Biol; 1993 Mar; 132(2):95-113. PubMed ID: 8496949
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Identification of Na+,Pi-binding protein in kidney and intestinal brush-border membranes.
    Debiec H; Lorenc R
    Biochem J; 1988 Oct; 255(1):185-91. PubMed ID: 3196312
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Sequence and functional characterization of a renal sodium/dicarboxylate cotransporter.
    Pajor AM
    J Biol Chem; 1995 Mar; 270(11):5779-85. PubMed ID: 7890707
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.