These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

67 related articles for article (PubMed ID: 6466718)

  • 21. Specific tryptophan UV-absorbance changes are probes of the transition of rhodopsin to its active state.
    Lin SW; Sakmar TP
    Biochemistry; 1996 Aug; 35(34):11149-59. PubMed ID: 8780519
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Structural features and light-dependent changes in the sequence 59-75 connecting helices I and II in rhodopsin: a site-directed spin-labeling study.
    Altenbach C; Klein-Seetharaman J; Hwa J; Khorana HG; Hubbell WL
    Biochemistry; 1999 Jun; 38(25):7945-9. PubMed ID: 10387037
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Distribution of surface-exposed and non-accessible amino acid sequences among the two major structural domains of the S-layer protein of Aeromonas salmonicida.
    Doig P; McCubbin WD; Kay CM; Trust TJ
    J Mol Biol; 1993 Oct; 233(4):753-65. PubMed ID: 7692070
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Tubulin secondary structure analysis, limited proteolysis sites, and homology to FtsZ.
    de Pereda JM; Leynadier D; Evangelio JA; Chacón P; Andreu JM
    Biochemistry; 1996 Nov; 35(45):14203-15. PubMed ID: 8916905
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Protein structural influences in rhodopsin evolution.
    Marsh L; Griffiths CS
    Mol Biol Evol; 2005 Apr; 22(4):894-904. PubMed ID: 15647521
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Modeling alpha-helical transmembrane domains: the calculation and use of substitution tables for lipid-facing residues.
    Donnelly D; Overington JP; Ruffle SV; Nugent JH; Blundell TL
    Protein Sci; 1993 Jan; 2(1):55-70. PubMed ID: 8443590
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Structural predictions of AgfA, the insoluble fimbrial subunit of Salmonella thin aggregative fimbriae.
    Collinson SK; Parker JM; Hodges RS; Kay WW
    J Mol Biol; 1999 Jul; 290(3):741-56. PubMed ID: 10395827
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Mutational analysis of the thermostable arginine repressor from Bacillus stearothermophilus: dissecting residues involved in DNA binding properties.
    Karaivanova IM; Weigel P; Takahashi M; Fort C; Versavaud A; Van Duyne G; Charlier D; Hallet JN; Glansdorff N; Sakanyan V
    J Mol Biol; 1999 Aug; 291(4):843-55. PubMed ID: 10452892
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Amino-acid sequence determination of a hydrophobic region of bovine rhodopsin.
    Pellicone C; Bouillon P; Virmaux N; Vincendon G
    Biochimie; 1981; 63(8-9):671-6. PubMed ID: 7306589
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Similarity of mas and rhodopsin gene products.
    Hayashida H; Kuma K; Miyata T
    Nature; 1986 Sep 11-17; 323(6084):116. PubMed ID: 3528865
    [No Abstract]   [Full Text] [Related]  

  • 31. Sequence divergence analysis for the prediction of seven-helix membrane protein structures: II. A 3-D model of human rhodopsin.
    Alkorta I; Du P
    Protein Eng; 1994 Oct; 7(10):1231-8. PubMed ID: 7855138
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Isolation and nucleotide sequence of the gene encoding human rhodopsin.
    Nathans J; Hogness DS
    Proc Natl Acad Sci U S A; 1984 Aug; 81(15):4851-5. PubMed ID: 6589631
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The structure of mammalian rod opsins.
    Findlay JB; Barclay PL; Brett M; Davison M; Pappin DJ; Thompson P
    Vision Res; 1984; 24(11):1501-8. PubMed ID: 6533984
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The carboxyl-terminal one-third of bovine rhodopsin: its structure and function.
    Hargrave PA; McDowell JH; Siemiatkowski-Juszczak EC; Fong SL; Kühn H; Wang JK; Curtis DR; Mohana Rao JK; Argos P; Feldmann RJ
    Vision Res; 1982; 22(12):1429-38. PubMed ID: 7182998
    [No Abstract]   [Full Text] [Related]  

  • 35. Rhodopsin's protein and carbohydrate structure: selected aspects.
    Hargrave PA; McDowell JH; Feldmann RJ; Atkinson PH; Rao JK; Argos P
    Vision Res; 1984; 24(11):1487-99. PubMed ID: 6533983
    [TBL] [Abstract][Full Text] [Related]  

  • 36. [Thermostability of the rhodopsins of several fish in the Sea of Japan].
    Berman AL; Shnyrov VL; Semen'kov PG
    Zh Evol Biokhim Fiziol; 1977; 13(5):640-2. PubMed ID: 919909
    [TBL] [Abstract][Full Text] [Related]  

  • 37. [Distribution of identical amino acid residues in the primary structure of proteins].
    Poroĭkov VV; Esipova NG; Tumanian VG
    Biofizika; 1976; 21(3):397-400. PubMed ID: 963085
    [TBL] [Abstract][Full Text] [Related]  

  • 38. On the disulphide bonds of rhodopsins.
    Al-Saleh S; Gore M; Akhtar M
    Biochem J; 1987 Aug; 246(1):131-7. PubMed ID: 3675552
    [TBL] [Abstract][Full Text] [Related]  

  • 39. [Structure formation mechanism of membrane proteins].
    Mitaku S; Ikuta K; Yanagihara N; Suwa M; Kataoka R; Itoh H
    Tanpakushitsu Kakusan Koso; 1989 May; 34(5):518-27. PubMed ID: 2748896
    [No Abstract]   [Full Text] [Related]  

  • 40. Protein secondary structure and homology by neural networks. The alpha-helices in rhodopsin.
    Bohr H; Bohr J; Brunak S; Cotterill RM; Lautrup B; Nørskov L; Olsen OH; Petersen SB
    FEBS Lett; 1988 Dec; 241(1-2):223-8. PubMed ID: 3197832
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 4.