These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

96 related articles for article (PubMed ID: 6466744)

  • 1. [Posttranslational deamidation of crystalline lens proteins during animal aging].
    Krichevskaia AA; Lukash AI; Pushkina NV; Shepotinovskaia IV; Sherstnev KB
    Nauchnye Doki Vyss Shkoly Biol Nauki; 1984; (7):23-8. PubMed ID: 6466744
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [Proteolytic splitting of proteins from the cortex and nuclear zones of the crystalline lens].
    Shepotinovskaia IV
    Ukr Biokhim Zh (1978); 1982; 54(5):554-7. PubMed ID: 7135513
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Hyperbaric oxygen in vivo accelerates the loss of cytoskeletal proteins and MIP26 in guinea pig lens nucleus.
    Padgaonkar VA; Lin LR; Leverenz VR; Rinke A; Reddy VN; Giblin FJ
    Exp Eye Res; 1999 Apr; 68(4):493-504. PubMed ID: 10192807
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Post-translational modifications in the nuclear region of young, aged, and cataract human lenses.
    Hains PG; Truscott RJ
    J Proteome Res; 2007 Oct; 6(10):3935-43. PubMed ID: 17824632
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Age-related nuclear cataract-oxidation is the key.
    Truscott RJ
    Exp Eye Res; 2005 May; 80(5):709-25. PubMed ID: 15862178
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The effects of hyperbaric oxygen on the crystallins of cultured rabbit lenses: a possible catalytic role for copper.
    Padgaonkar VA; Leverenz VR; Fowler KE; Reddy VN; Giblin FJ
    Exp Eye Res; 2000 Oct; 71(4):371-83. PubMed ID: 10995558
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Higher glycation of beta L- and beta S-crystallins in the anterior lens cortex and maximum glycation of gamma-crystallins in the bovine lens nucleus, demonstrated by frozen sectioning, isoelectric focusing and lectin staining.
    Bours J; Ahrend MH; Utikal KJ
    Ophthalmic Res; 1998; 30(4):233-43. PubMed ID: 9667054
    [TBL] [Abstract][Full Text] [Related]  

  • 8. 13C NMR studies of protein motional dynamics in bovine, human, rat, and chicken ocular lenses.
    Rydzewski JM; Wang SX; Stevens A; Serdahl C; Schleich T
    Exp Eye Res; 1993 Mar; 56(3):305-16. PubMed ID: 8472786
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Comparative study of crystallins from the nucleus and cortex of the bovine ocular lens by the gel filtration and x-ray diffraction methods].
    Krivandin AV; L'vov IuM; Ostrovskiĭ MA; Fedorovich IB; Feĭgin LA
    Biofizika; 1985; 30(1):107-11. PubMed ID: 3978131
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Multi-crystallin complexes exist in the water-soluble high molecular weight protein fractions of aging normal and cataractous human lenses.
    Srivastava K; Chaves JM; Srivastava OP; Kirk M
    Exp Eye Res; 2008 Oct; 87(4):356-66. PubMed ID: 18662688
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Supramolecular order within the lens: 1H NMR spectroscopic evidence for specific crystallin-crystallin interactions.
    Cooper PG; Aquilina JA; Truscott RJ; Carver JA
    Exp Eye Res; 1994 Nov; 59(5):607-16. PubMed ID: 9492762
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Deamidation and disulfide bonding in human lens gamma-crystallins.
    Hanson SR; Smith DL; Smith JB
    Exp Eye Res; 1998 Sep; 67(3):301-12. PubMed ID: 9778411
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Deamidation of specific glutamine residues from alpha-A crystallin during aging of the human lens.
    Takemoto L; Boyle D
    Biochemistry; 1998 Sep; 37(39):13681-5. PubMed ID: 9753455
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Age-related changes in human lens crystallins identified by HPLC and mass spectrometry.
    Ma Z; Hanson SR; Lampi KJ; David LL; Smith DL; Smith JB
    Exp Eye Res; 1998 Jul; 67(1):21-30. PubMed ID: 9702175
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Changes in calpain II mRNA in young rat lens during maturation and cataract formation.
    Ma H; Shih M; Throneberg DB; David LL; Shearer TR
    Exp Eye Res; 1997 Mar; 64(3):437-45. PubMed ID: 9196396
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Distribution of phosphatic metabolites in the crystalline lens.
    Greiner JV; Kopp SJ; Glonek T
    Invest Ophthalmol Vis Sci; 1985 Apr; 26(4):537-44. PubMed ID: 3980170
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Reversible binding of kynurenine to lens proteins: potential protection by glutathione in young lenses.
    Parker NR; Korlimbinis A; Jamie JF; Davies MJ; Truscott RJ
    Invest Ophthalmol Vis Sci; 2007 Aug; 48(8):3705-13. PubMed ID: 17652742
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Membrane association of proteins in the aging human lens: profound changes take place in the fifth decade of life.
    Friedrich MG; Truscott RJ
    Invest Ophthalmol Vis Sci; 2009 Oct; 50(10):4786-93. PubMed ID: 19458333
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Interactions of lens proteins. Concentration dependence of beta-crystallin aggregation.
    Siezen RJ; Anello RD; Thomson JA
    Exp Eye Res; 1986 Sep; 43(3):293-303. PubMed ID: 3780875
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ageing and vision: structure, stability and function of lens crystallins.
    Bloemendal H; de Jong W; Jaenicke R; Lubsen NH; Slingsby C; Tardieu A
    Prog Biophys Mol Biol; 2004 Nov; 86(3):407-85. PubMed ID: 15302206
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.