These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 6466795)

  • 21. A computational study of the flow through a vitreous cutter.
    Juan T; Hubschman JP; Eldredge JD
    J Biomech Eng; 2010 Dec; 132(12):121005. PubMed ID: 21142319
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Particle interaction in solutions derived from ox vitreous humor.
    WOODIN AM; BORUCHOFF SA
    J Biophys Biochem Cytol; 1955 Nov; 1(6):489-500. PubMed ID: 13278362
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Measuring localized viscoelasticity of the vitreous body using intraocular microprobes.
    Pokki J; Ergeneman O; Sevim S; Enzmann V; Torun H; Nelson BJ
    Biomed Microdevices; 2015 Oct; 17(5):85. PubMed ID: 26238733
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Dynamic viscoelastic properties of bovine viterous.
    Bettelheim FA; Wang TJ
    Exp Eye Res; 1976 Oct; 23(4):435-41. PubMed ID: 976385
    [No Abstract]   [Full Text] [Related]  

  • 25. A hydrodynamic model of aqueous flow in the posterior chamber of the eye.
    Friedland AB
    Bull Math Biol; 1978; 40(2):223-35. PubMed ID: 638286
    [No Abstract]   [Full Text] [Related]  

  • 26. Radiation force imaging of viscoelastic properties with reduced artifacts.
    Viola F; Walker WF
    IEEE Trans Ultrason Ferroelectr Freq Control; 2003 Jun; 50(6):736-42. PubMed ID: 12839188
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The nonlinear viscoelasticity of hyaluronic acid and its role in joint lubrication.
    Zhang Z; Christopher GF
    Soft Matter; 2015 Apr; 11(13):2596-603. PubMed ID: 25686377
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Numerical simulation of the fluid dynamics in vitreous cavity due to saccadic eye movement.
    Abouali O; Modareszadeh A; Ghaffariyeh A; Tu J
    Med Eng Phys; 2012 Jul; 34(6):681-92. PubMed ID: 22014588
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Investigation of the motion of a viscous fluid in the vitreous cavity induced by eye rotations and implications for drug delivery.
    Bonfiglio A; Repetto R; Siggers JH; Stocchino A
    Phys Med Biol; 2013 Mar; 58(6):1969-82. PubMed ID: 23459465
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Rheological Properties and Age-Related Changes of the Human Vitreous Humor.
    Tram NK; Swindle-Reilly KE
    Front Bioeng Biotechnol; 2018; 6():199. PubMed ID: 30619846
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Artificial vitreous humor for in vitro experiments.
    Kummer MP; Abbott JJ; Dinser S; Nelson BJ
    Annu Int Conf IEEE Eng Med Biol Soc; 2007; 2007():6407-10. PubMed ID: 18003488
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Model of the accommodative mechanism in the human eye.
    Koretz JF; Handelman GH
    Vision Res; 1982; 22(8):917-27. PubMed ID: 7135854
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Effect of choroidal blood perfusion and natural convection in vitreous humor during transpupillary thermotherapy (TTT).
    Narasimhan A; Sundarraj C
    Int J Numer Method Biomed Eng; 2013 Apr; 29(4):530-41. PubMed ID: 23322724
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Localized viscoelasticity measurements with untethered intravitreal microrobots.
    Pokki J; Ergeneman O; Bergeles C; Torun H; Nelson BJ
    Annu Int Conf IEEE Eng Med Biol Soc; 2012; 2012():2813-6. PubMed ID: 23366510
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Development and characterization of a vitreous mimicking material for radiation force imaging.
    Negron LA; Viola F; Black EP; Toth CA; Walker WF
    IEEE Trans Ultrason Ferroelectr Freq Control; 2002 Nov; 49(11):1543-51. PubMed ID: 12484477
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Experimental investigation of vitreous humour motion within a human eye model.
    Repetto R; Stocchino A; Cafferata C
    Phys Med Biol; 2005 Oct; 50(19):4729-43. PubMed ID: 16177501
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Leukocyte deformability: finite element modeling of large viscoelastic deformation.
    Dong C; Skalak R
    J Theor Biol; 1992 Sep; 158(2):173-93. PubMed ID: 1474842
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Experimental assessment of the performance of vitreous cutters with fluids with different rheological properties.
    Nepita I; Repetto R; Dodero A; Vicini S; Ferrara M; Romano MR; Stocchino A
    Graefes Arch Clin Exp Ophthalmol; 2021 May; 259(5):1113-1121. PubMed ID: 33394160
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Evaluation and correction for optical scattering variations in laser speckle rheology of biological fluids.
    Hajjarian Z; Nadkarni SK
    PLoS One; 2013; 8(5):e65014. PubMed ID: 23705028
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Mathematical analogue of the posterior blood-ocular barriers.
    Moseley H
    Trans Ophthalmol Soc U K (1962); 1977 Sep; 97(4):565-8. PubMed ID: 281786
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.