BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 6466806)

  • 1. The hypotonic hemolysis and the protective action of lysophosphatidylcholine.
    Eskelinen S; Saukko P
    Biorheology; 1984; 21(3):363-77. PubMed ID: 6466806
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cation permeability and mechanical properties of the erythrocyte membrane under the influence of lysophosphatidylcholine (LPC) in isotonic and hypotonic media.
    Eskelinen S; Mela M
    Acta Physiol Scand; 1984 Dec; 122(4):527-34. PubMed ID: 6524395
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of lysophosphatidylcholine on salt permeability through the erythrocyte membrane under haemolytic conditions.
    Eskelinen S
    Gen Physiol Biophys; 1986 Dec; 5(6):637-47. PubMed ID: 3557104
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Protective effects of quinaprilat and trandolaprilat, active metabolites of quinapril and trandolapril, on hemolysis induced by lysophosphatidylcholine in human erythrocytes.
    Hayase N; Satomi M; Hara A; Awaya T; Shimizu K; Matsubara K
    Biol Pharm Bull; 2003 May; 26(5):712-6. PubMed ID: 12736518
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The effect of an osmotic pressure gradient and lysophosphatidylcholine on the transient and constant potassium permeability properties of the erythrocyte membrane.
    Eskelinen S; Bernhardt I
    Biomed Biochim Acta; 1984; 43(7):947-53. PubMed ID: 6517890
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Slow phase hemolysis in hypotonic electrolyte solutions.
    Chan TK; LaCelle PL; Weed RI
    J Cell Physiol; 1975 Feb; 85(1):47-57. PubMed ID: 1110261
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Sinomenine and magnoflorine, major constituents of Sinomeni caulis et rhizoma, show potent protective effects against membrane damage induced by lysophosphatidylcholine in rat erythrocytes.
    Sakumoto H; Yokota Y; Ishibashi G; Maeda S; Hoshi C; Takano H; Kobayashi M; Yahagi T; Ijiri S; Sakakibara I; Hara A
    J Nat Med; 2015 Jul; 69(3):441-8. PubMed ID: 25840917
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Normal and homogeneous red blood cell populations over a wide range of hyper-iso-hypotonic media. III. Corrected volumes in Coulter Counter measurements.
    Mela M; Eskelinen S
    Acta Physiol Scand; 1984 Dec; 122(4):515-25. PubMed ID: 6524394
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Protective effects of dilazep and its derivative K-7259 on the haemolysis induced by amphiphiles in rat erythrocytes.
    Hara A; Hayase N; Hashizume H; Abiko Y
    J Pharm Pharmacol; 1997 Aug; 49(8):806-11. PubMed ID: 9379361
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Participation of band 3 protein in hypotonic hemolysis of human erythrocytes.
    Sato Y; Yamakose H; Suzuki Y
    Biol Pharm Bull; 1993 Feb; 16(2):188-94. PubMed ID: 8395931
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Erythrocyte changes in aqueous polyethylene glycol solutions containing sodium chloride.
    Nishio T; Hirota S; Yamashita J; Kobayashi K; Motohashi Y; Kato Y
    J Pharm Sci; 1982 Sep; 71(9):977-9. PubMed ID: 7131281
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mechanism of human erythrocyte hemolysis induced by short-chain phosphatidylcholines and lysophosphatidylcholine.
    Tanaka Y; Mashino K; Inoue K; Nojima S
    J Biochem; 1983 Sep; 94(3):833-40. PubMed ID: 6643425
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Protective effects of some neutral amino acids against hypotonic hemolysis.
    Morimoto Y; Tanaka K; Iwakiri Y; Tokuhiro S; Fukushima S; Takeuchi Y
    Biol Pharm Bull; 1995 Oct; 18(10):1417-22. PubMed ID: 8593448
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Biophysical correlates of lysophosphatidylcholine- and ethanol-mediated shape transformation and hemolysis of human erythrocytes. Membrane viscoelasticity and NMR measurement.
    Chi LM; Wu WG; Sung KL; Chien S
    Biochim Biophys Acta; 1990 Aug; 1027(2):163-71. PubMed ID: 2397228
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Hydroxytamoxifen interaction with human erythrocyte membrane and induction of permeabilization and subsequent hemolysis.
    Cruz Silva MM; Madeira VM; Almeida LM; Custódio JB
    Toxicol In Vitro; 2001 Dec; 15(6):615-22. PubMed ID: 11698160
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cytolytic and membrane-perturbing properties of lysophosphatidylcholine.
    Weltzien HU
    Biochim Biophys Acta; 1979 Aug; 559(2-3):259-87. PubMed ID: 476122
    [No Abstract]   [Full Text] [Related]  

  • 17. Lysophosphatidylcholine-induced lysis of erythrocytes in Duchenne and myotonic dystrophies and in Huntington's disease.
    Omachi A; Sarpel G; Podolski JL; Barr AN; Lazowski E; Danon MJ
    J Neurol Sci; 1982 Nov; 56(2-3):249-58. PubMed ID: 6217298
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Erythrocyte membranes from slaughterhouse blood as potential drug vehicles: Isolation by gradual hypotonic hemolysis and biochemical and morphological characterization.
    Kostić IT; Ilić VL; Đorđević VB; Bukara KM; Mojsilović SB; Nedović VA; Bugarski DS; Veljović ĐN; Mišić DM; Bugarski BM
    Colloids Surf B Biointerfaces; 2014 Oct; 122():250-259. PubMed ID: 25051307
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The relationship between calcium and the metabolism of plasma membrane phospholipids in hemolysis induced by brown spider venom phospholipase-D toxin.
    Chaves-Moreira D; Souza FN; Fogaça RT; Mangili OC; Gremski W; Senff-Ribeiro A; Chaim OM; Veiga SS
    J Cell Biochem; 2011 Sep; 112(9):2529-40. PubMed ID: 21590705
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of dehydroabietic acid on the erythrocyte membrane.
    Toivola DM; Isomaa B
    Chem Biol Interact; 1991; 79(1):65-78. PubMed ID: 2060038
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.