These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

107 related articles for article (PubMed ID: 6466810)

  • 1. On the mechanism of the spontaneous aggregation of human erythrocytes at reduced ionic strength and PH.
    van Oss CJ
    Biorheology; 1984; 21(3):415-6. PubMed ID: 6466810
    [No Abstract]   [Full Text] [Related]  

  • 2. Cell surface alterations during blood-storage characterized by artificial aggregation of washed red blood cells.
    Hessel E; Lerche D
    Vox Sang; 1985; 49(2):86-91. PubMed ID: 4036086
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Spontaneous aggregation of washed human erythrocytes in isotonic media of reduced ionic strength. Conclusions about the spatial arrangement of the N-terminal part of the glycophorins.
    Lerche D
    Biorheology; 1982; 19(5):587-98. PubMed ID: 7150713
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Investigations of artificial aggregation of washed human erythrocytes caused by decreased pH and reduced ionic strength.
    Lerche D; Glaser R
    Acta Biol Med Ger; 1980; 39(8-9):973-8. PubMed ID: 7282229
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of pH on the velocity of erythrocyte aggregation.
    Maeda N; Seike M; Suzuki Y; Shiga T
    Biorheology; 1988; 25(1-2):25-30. PubMed ID: 3196821
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of two low osmolality contrast media on red blood cell filterability and aggregation in vitro.
    Mary A; Berlan J; Bousquet C; Senac JP
    Eur J Radiol; 1991; 13(2):134-7. PubMed ID: 1743191
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Interaction of sulfated polysaccharides with plasma membranes--II. Effect of ionic strength, temperature and trypsin digestion of the erythrocyte surface on the aggregation of erythrocytes by iota carrageenans.
    Pittz EP; Jones R; Goldberg L; Coulston F
    Biorheology; 1977; 14(1):33-42. PubMed ID: 857959
    [No Abstract]   [Full Text] [Related]  

  • 8. Electrochemical interactions between erythrocyte surfaces.
    Chien S
    Thromb Res; 1976 May; 8(2 suppl):189-202. PubMed ID: 936075
    [No Abstract]   [Full Text] [Related]  

  • 9. Interaction of erythrocytes with human serum proteins. I. Analysis of the effect of pH and ionic strength of the medium.
    Shamardin VA; Tsarevskil YP; Karalnik BV
    J Hyg Epidemiol Microbiol Immunol; 1976; 21(3):353-60. PubMed ID: 11260
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of iohexol on human erythrocytes. II. Red cell aggregation in vitro.
    Aspelin P; Birk A; Almén T; Kiesewetter H
    Acta Radiol Suppl; 1980; 362():123-6. PubMed ID: 6267883
    [No Abstract]   [Full Text] [Related]  

  • 11. Variations of intracellular pH in human erythrocytes via K(+)(Na(+))/H(+) exchange under low ionic strength conditions.
    Kummerow D; Hamann J; Browning JA; Wilkins R; Ellory JC; Bernhardt I
    J Membr Biol; 2000 Aug; 176(3):207-16. PubMed ID: 10931972
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Automated antibody detection in a low ionic strength (glycine) medium.
    Holburn AM; Ives C
    Vox Sang; 1978; 34(6):335-8. PubMed ID: 27011
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Interaction of erythrocytes with human serum proteins. I. Analysis of the effect of pH and ionic strength of the medium.
    Shamardin VA; Tsarevskii YP; Karalnik BV
    J Hyg Epidemiol Microbiol Immunol; 1976; 21(3):353-60. PubMed ID: 13124
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Binding of bilirubin to mammalian erythrocytes.
    Tayyab S; Ali MK
    Comp Biochem Physiol B Biochem Mol Biol; 1997 Sep; 118(1):97-103. PubMed ID: 9417998
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The electrophoretic properties of red blood cells: the effect of changing pH and ionic strength.
    BATEMAN JB; ZELLNER A
    Arch Biochem Biophys; 1956 Jan; 60(1):44-51. PubMed ID: 13283586
    [No Abstract]   [Full Text] [Related]  

  • 16. Quantitative red blood cell aggregometry of human and hamster blood.
    Berman HJ; Fuhro RL
    Bibl Anat; 1973; 11():117-24. PubMed ID: 4789032
    [No Abstract]   [Full Text] [Related]  

  • 17. Relationship of hemolysis buffer structure, pH and ionic strength to spontaneous contour smoothing of isolated erythrocyte membranes.
    Raval PJ; Carter DP; Fairbanks G
    Biochim Biophys Acta; 1989 Aug; 983(2):230-40. PubMed ID: 2758059
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Study on erythrocyte aggregation using computerized image analysis methods.
    Lăcătuşu D; Căruntu ID; Rusu V
    Rev Med Chir Soc Med Nat Iasi; 2013; 117(3):801-5. PubMed ID: 24502054
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Interaction of eosin-5-maleimide with band 3 of human erythrocytes.
    Yamakose H; Sato Y; Suzuki Y
    Biol Pharm Bull; 1993 Dec; 16(12):1282-7. PubMed ID: 7510568
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [A study of the aggregation of human red blood cells induced by picric acid].
    Sheremet'ev IuA; Sheremet'eva AV; Lednev AV
    Biofizika; 2005; 50(5):901-2. PubMed ID: 16248166
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.