These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 646799)

  • 21. Ca2+ release from energetically coupled tumor mitochondria.
    Fleschner CR; Martin AP; Vorbeck ML; Darnold JR; Long JW
    Biochem Biophys Res Commun; 1983 Sep; 115(2):430-6. PubMed ID: 6626199
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Conditions for activity of glutaminase in kidney mitochondria.
    Kovacević Z; McGivan JD; Chappell JB
    Biochem J; 1970 Jun; 118(2):265-74. PubMed ID: 5530189
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The mechanism of palmitoyl-CoA inhibition of Ca2+ uptake in liver and heart mitochondria.
    Beatrice MC; Pfeiffer DR
    Biochem J; 1981 Jan; 194(1):71-7. PubMed ID: 7305993
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Calcium transport and inner mitochondrial membrane damage in renal cortical mitochondria.
    Weinberg JM; Humes HD
    Am J Physiol; 1985 Jun; 248(6 Pt 2):F876-89. PubMed ID: 4003558
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Calcium transport by Ehrlich ascites cell mitochondria in vitro and in situ.
    Cockrell RS
    Arch Biochem Biophys; 1981 Dec; 212(2):443-51. PubMed ID: 7325670
    [No Abstract]   [Full Text] [Related]  

  • 26. Determination of the P/2e- stoichiometries at the individual coupling sites in mitochondrial oxidative phosphorylation. Evidence for maximum values of 1.0, 0.5, and 1.0 at sites 1, 2, and 3.
    Stoner CD
    J Biol Chem; 1987 Aug; 262(22):10445-53. PubMed ID: 3611076
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The regulation of brain mitochondrial calcium-ion transport. The role of ATP in the discrimination between kinetic and membrane-potential-dependent calcium-ion efflux mechanisms.
    Nicholls DG; Scott ID
    Biochem J; 1980 Mar; 186(3):833-9. PubMed ID: 7396840
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Transient 45Ca uptake and release in isolated rat-liver cells during recovery from deenergized states.
    Krell H; Baur H; Pfaff E
    Eur J Biochem; 1979 Nov; 101(2):349-64. PubMed ID: 520303
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Calcium metabolism and cystic fibrosis: mitochondrial abnormalities suggest a modification of the mitochondrial membrane.
    von Ruecker AA; Bertele R; Harms HK
    Pediatr Res; 1984 Jul; 18(7):594-9. PubMed ID: 6206464
    [TBL] [Abstract][Full Text] [Related]  

  • 30. [Analysis of the kinetics of Ca2+ signals in Ehrlich ascites tumor cells upon the inhibition of the mitochondrial Na+/Ca2+ exchanger].
    Chernykh AM; Dolgacheva LP; Kaĭmachnikov NP; Zinchenko VP
    Biofizika; 2004; 49(3):511-8. PubMed ID: 15327211
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Mitochondrial permeability transition in neuronal damage promoted by Ca2+ and respiratory chain complex II inhibition.
    Maciel EN; Kowaltowski AJ; Schwalm FD; Rodrigues JM; Souza DO; Vercesi AE; Wajner M; Castilho RF
    J Neurochem; 2004 Sep; 90(5):1025-35. PubMed ID: 15312158
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The transport and oxidation of succinate by Ehrlich ascites-tumour cells.
    Spencer TL
    Biochem J; 1976 Oct; 160(1):121-3. PubMed ID: 12744
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The oxidative activities of membrane vesicles from Bacillus caldolyticus. Energy-dependence of succinate oxidation.
    Dawson AG; Chappell JB
    Biochem J; 1978 Feb; 170(2):395-405. PubMed ID: 205211
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The mechanism of inhibition on the endogenous respiration of Ehrlich ascites tumor cells by the cyanine dye diS-C3-(5).
    Okimasu E; Akiyama J; Shiraishi N; Utsumi K
    Physiol Chem Phys; 1979; 11(5):425-33. PubMed ID: 161623
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The effect of mitochondrial inhibitors on calcium homeostasis in tumor mast cells.
    Mohr FC; Fewtrell C
    Am J Physiol; 1990 Feb; 258(2 Pt 1):C217-26. PubMed ID: 2137675
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Shift in the localization of sites of hydrogen peroxide production in brain mitochondria by mitochondrial stress.
    Gyulkhandanyan AV; Pennefather PS
    J Neurochem; 2004 Jul; 90(2):405-21. PubMed ID: 15228597
    [TBL] [Abstract][Full Text] [Related]  

  • 37. [Characteristics of reversible and irreversible Ca2+-induced efflux of Ca2+ from mitochondria in permeabilized Ehrlich ascites carcinoma cells].
    Teplova VV; Sidash SS; Makarov PR; Evtodienko IuV
    Biokhimiia; 1995 Jun; 60(6):944-52. PubMed ID: 7654866
    [TBL] [Abstract][Full Text] [Related]  

  • 38. CALCIUM ION ACCUMULATION AND VOLUME CHANGES OF ISOLATED LIVER MITOCHONDRIA. CALCIUM ION-INDUCED SWELLING.
    CHAPPELL JB; CROFTS AR
    Biochem J; 1965 May; 95(2):378-86. PubMed ID: 14340088
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Effect of cyclosporin A on Ca2+ fluxes and the rate of respiration in Ehrlich ascites tumour cells.
    Evtodienko YV; Teplova VV; Duszyński J; Wojtczak L
    Biochem Mol Biol Int; 1995 Apr; 35(5):1113-21. PubMed ID: 7549930
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Kinetic evidence for calcium-ion and phosphate-ion transport systems in mitochondria from Ehrlich ascites tumour cells.
    Thorne RF; Bygrave FL
    FEBS Lett; 1975 Aug; 56(2):185-8. PubMed ID: 1157937
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.