These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
119 related articles for article (PubMed ID: 6469505)
1. The key role of hydroxylation for the cytostatic activity and selectivity of cyclophosphamide. Hilgard P; Brock N Invest New Drugs; 1984; 2(2):131-2. PubMed ID: 6469505 [TBL] [Abstract][Full Text] [Related]
2. Chemical characterization of ASTA Z 7557 (INN mafosfamide, CIS-4-sulfoethylthio-cyclophosphamide), a stable derivative of 4-hydroxy-cyclophosphamide. Niemeyer U; Engel J; Scheffler G; Molge K; Sauerbier D; Weigert W Invest New Drugs; 1984; 2(2):133-9. PubMed ID: 6469506 [TBL] [Abstract][Full Text] [Related]
3. [Classical oxazaphosphorines--metabolism and therapeutic properties--new implications]. Sloderbach A; Górska A; Sikorska M; Misiura K; Hładoń B Postepy Hig Med Dosw (Online); 2013 Dec; 67():1235-53. PubMed ID: 24379264 [TBL] [Abstract][Full Text] [Related]
4. Differential activation of cyclophosphamide and ifosphamide by cytochromes P-450 2B and 3A in human liver microsomes. Chang TK; Weber GF; Crespi CL; Waxman DJ Cancer Res; 1993 Dec; 53(23):5629-37. PubMed ID: 8242617 [TBL] [Abstract][Full Text] [Related]
5. The problem of oncostatic specificity of cyclophosphamide (NSC-26271): Studies on reactions that control the alkylating and cytotoxic activity. Hohorst HJ; Draeger U; Peter G; Voelcker G Cancer Treat Rep; 1976 Apr; 60(4):309-15. PubMed ID: 1277206 [TBL] [Abstract][Full Text] [Related]
6. Trofosfamide metabolism in different species--ifosfamide is the predominant metabolite. Boos J; Küpker F; Blaschke G; Jürgens H Cancer Chemother Pharmacol; 1993; 33(1):71-6. PubMed ID: 8269592 [TBL] [Abstract][Full Text] [Related]
7. Enhanced cyclophosphamide and ifosfamide activation in primary human hepatocyte cultures: response to cytochrome P-450 inducers and autoinduction by oxazaphosphorines. Chang TK; Yu L; Maurel P; Waxman DJ Cancer Res; 1997 May; 57(10):1946-54. PubMed ID: 9157990 [TBL] [Abstract][Full Text] [Related]
8. Biologic activity of two derivatives and six possible metabolites of cyclophosphamide (NSC-26271). Lelieveld P; van Putten LM Cancer Treat Rep; 1976 Apr; 60(4):373-9. PubMed ID: 1064468 [TBL] [Abstract][Full Text] [Related]
9. The enzymatic basis of cyclophosphamide specificity. Hohorst HJ; Bielicki L; Voelcker G Adv Enzyme Regul; 1986; 25():99-122. PubMed ID: 3028054 [TBL] [Abstract][Full Text] [Related]
10. Mixed function oxidase activities of established human colon carcinoma cell lines in the activation of cyclophosphamide. Moskwa PS; Vadi H; Drewinko B Cancer Res; 1985 Nov; 45(11 Pt 1):5447-51. PubMed ID: 4053018 [TBL] [Abstract][Full Text] [Related]
11. Comparative in vitro cytotoxicity of cyclophosphamide, its major active metabolites and the new oxazaphosphorine ASTA Z 7557 (INN mafosfamide). Alberts DS; Einspahr JG; Struck R; Bignami G; Young L; Surwit EA; Salmon SE Invest New Drugs; 1984; 2(2):141-8. PubMed ID: 6469507 [TBL] [Abstract][Full Text] [Related]
12. Intratumoral activation and enhanced chemotherapeutic effect of oxazaphosphorines following cytochrome P-450 gene transfer: development of a combined chemotherapy/cancer gene therapy strategy. Chen L; Waxman DJ Cancer Res; 1995 Feb; 55(3):581-9. PubMed ID: 7834628 [TBL] [Abstract][Full Text] [Related]
13. Metabolism and pharmacokinetics of oxazaphosphorines. Boddy AV; Yule SM Clin Pharmacokinet; 2000 Apr; 38(4):291-304. PubMed ID: 10803453 [TBL] [Abstract][Full Text] [Related]
14. Release of a votile factor from solutions of oxazaphosphorines which damage normal and malignant cells. Blomgren H; Hallström M Methods Find Exp Clin Pharmacol; 1989 Jun; 11(6):391-7. PubMed ID: 2747340 [TBL] [Abstract][Full Text] [Related]
15. Insights on cyclophosphamide metabolism and anticancer mechanism of action: A computational study. Dabbish E; Scoditti S; Shehata MNI; Ritacco I; Ibrahim MAA; Shoeib T; Sicilia E J Comput Chem; 2024 Apr; 45(10):663-670. PubMed ID: 38088485 [TBL] [Abstract][Full Text] [Related]
16. Role of cytochrome P450 in oxazaphosphorine metabolism. Deactivation via N-dechloroethylation and activation via 4-hydroxylation catalyzed by distinct subsets of rat liver cytochromes P450. Yu L; Waxman DJ Drug Metab Dispos; 1996 Nov; 24(11):1254-62. PubMed ID: 8937861 [TBL] [Abstract][Full Text] [Related]
17. [Effective levels of cyclophosphamide and metabolites in pleural effusions during intravenous therapy (author's transl)]. Wagner T; Heydrich D Arzneimittelforschung; 1982; 32(5):566-8. PubMed ID: 7201835 [TBL] [Abstract][Full Text] [Related]
18. Ideas and reality in the development of cancer chemotherapeutic agents, with particular reference to oxazaphosphorine cytostatics. Brock N J Cancer Res Clin Oncol; 1986; 111(1):1-12. PubMed ID: 3949846 [TBL] [Abstract][Full Text] [Related]
19. Antineoplastic activity of ASTA Z 7557 (NSC-345842, INN mafosfamide) on transplantable murine tumors. Atassi G; Hilgard P; Pohl J Invest New Drugs; 1984; 2(2):169-73. PubMed ID: 6469511 [TBL] [Abstract][Full Text] [Related]
20. Development of a substrate-activity based approach to identify the major human liver P-450 catalysts of cyclophosphamide and ifosfamide activation based on cDNA-expressed activities and liver microsomal P-450 profiles. Roy P; Yu LJ; Crespi CL; Waxman DJ Drug Metab Dispos; 1999 Jun; 27(6):655-66. PubMed ID: 10348794 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]