These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 6469721)

  • 1. The ultrastructural ionic fixation technique localizing acetylcholinesterase activity, reveals simultaneously acetylcholine-like cation in the synaptic vesicles of the motor nerve terminals.
    Tsuji S
    Histochemistry; 1984; 81(1):35-7. PubMed ID: 6469721
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ultracytochemical localization of acetylcholine-like cations in excited motor end-plates by means of ionic fixation.
    Tsuji S
    Histochemistry; 1985; 83(3):213-9. PubMed ID: 2995285
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Silicotungstic acid for cytochemical localization of water soluble substance(s) of cholinergic motor nerve terminal.
    Tsuji S; Alameddine HS
    Histochemistry; 1981; 73(1):33-7. PubMed ID: 6274828
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Molybdic and tungstic heteropolyanions for "ionic fixation" of acetylcholine in cholinergic motor nerve terminals.
    Tsuji S; Alameddine HS; Nakanishi S; Ohoka T
    Histochemistry; 1983; 77(1):51-6. PubMed ID: 6302036
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Electron microscopical autoradiography of [3H]choline fixed by phosphomolybdic acid in the motor nerve terminal.
    Tsuji S
    Neurosci Lett; 1984 Mar; 45(2):151-6. PubMed ID: 6728311
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ultrastructural localization of acetylcholinesterase activity by means of the electron dense precipitate derived from Koelle's cuprous thiocholine iodide by treatment with phosphomolybdic acid and osmium tetroxide.
    Tsuji S; Fournier M
    Histochemistry; 1984; 80(1):19-21. PubMed ID: 6698812
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structure of muscle fibres and motor end-plates in the intercostal muscles of lizard, Lacerta agilis L.
    Witaliński W
    Z Mikrosk Anat Forsch; 1974; 88(5):796-808. PubMed ID: 4460437
    [No Abstract]   [Full Text] [Related]  

  • 8. Simultaneous visualization of acetylcholinesterase activity and acetylcholine receptor clusters at neuromuscular synapses in vivo and in vitro.
    Do Thi A; De La Porte S; Koenig J
    Biol Cell; 1984; 50(1):99-102. PubMed ID: 6234043
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Histochemical staining of the acetylcholine receptor, acetylcholinesterase, and the axon terminal.
    Bjornskov EK; Norris FH; Mower-Kuby J
    Muscle Nerve; 1982 Feb; 5(2):140-2. PubMed ID: 7070395
    [No Abstract]   [Full Text] [Related]  

  • 10. Electron-microscope cytochemistry of acetylcholine-like cation by means of low-temperature "ionic fixation".
    Tsuji S
    Histochemistry; 1984; 81(5):453-5. PubMed ID: 6520022
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Heterogeneity of neuromuscular junctions in striated muscle of human esophagus demonstrated by triple staining for the vesicular acetylcholine transporter, alpha-bungarotoxin, and acetylcholinesterase.
    Kallmünzer B; Sörensen B; Neuhuber WL; Wörl J
    Cell Tissue Res; 2006 May; 324(2):181-8. PubMed ID: 16437206
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Acetylcholine in neurons and paraneurons: a histochemical study.
    Tsuji S; Anglade P
    Arch Histol Cytol; 1989; 52 Suppl():75-83. PubMed ID: 2510806
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Reduced expression of the vesicular acetylcholine transporter and neurotransmitter content affects synaptic vesicle distribution and shape in mouse neuromuscular junction.
    Rodrigues HA; Fonseca Mde C; Camargo WL; Lima PM; Martinelli PM; Naves LA; Prado VF; Prado MA; Guatimosim C
    PLoS One; 2013; 8(11):e78342. PubMed ID: 24260111
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A modification of thiocholine-ferricyanide method of Karnovsky and Roots for localization of acetylcholinesterase activity without interference by Koelle's copper thiocholine iodide precipitate.
    Tsuji S; Larabi Y
    Histochemistry; 1983; 78(3):317-23. PubMed ID: 6193086
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A new myasthenic syndrome with end-plate acetylcholinesterase deficiency, small nerve terminals, and reduced acetylcholine release.
    Engel AG; Lambert EH; Gomez MR
    Ann Neurol; 1977 Apr; 1(4):315-30. PubMed ID: 214017
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Acetylcholine receptors and acetylcholinesterase activity in soleus muscle of trembler dysmyelinating mutant: a cytochemical and biochemical analysis.
    Do Thi NA; Bon C; Koenig HL; Bourre JM
    Neurosci Lett; 1986 Mar; 65(1):72-8. PubMed ID: 3010196
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Vesicle size and transmitter release at the frog neuromuscular junction when quantal acetylcholine content is increased or decreased.
    Van der Kloot W; Molgó J; Cameron R; Colasante C
    J Physiol; 2002 Jun; 541(Pt 2):385-93. PubMed ID: 12042346
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The acetylcholine receptor and the ionic conductance modulation system of skeletal muscle.
    Barnard EA; Dolly JO; Porter CW; Albuquerque EX
    Exp Neurol; 1975 Jul; 48(1):1-28. PubMed ID: 165962
    [No Abstract]   [Full Text] [Related]  

  • 19. End-plate acetylcholinesterase deficiency associated with small nerve terminals and reduced acetylcholine release. A new syndrome.
    Engel AG; Lambert EH; Gomez MR
    Int J Neurol; 1980; 14(1):73-86. PubMed ID: 6293992
    [No Abstract]   [Full Text] [Related]  

  • 20. Koelle's copper thiocholine method performed with a low-pH phosphate buffer, followed by osmification of the precipitate: revival of two abandoned procedures.
    Tsuji S
    Histochemistry; 1984; 81(2):129-31. PubMed ID: 6490401
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.