These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

104 related articles for article (PubMed ID: 6469869)

  • 1. Chemical modification of spiramycins. III. Synthesis and antibacterial activities of 4''-sulfonates and 4''-alkylethers of spiramycin I.
    Sano H; Sunazuka T; Tanaka H; Yamashita K; Okachi R; Omura S
    J Antibiot (Tokyo); 1984 Jul; 37(7):750-9. PubMed ID: 6469869
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Chemical modification of spiramycins. VI. Synthesis and antibacterial activities of 3,3''-di-O-acyl-4''-O-sulfonyl and 3,3''-di-O-acyl-4''-O-alkyl derivatives of spiramycin I.
    Sano M; Sunazuka T; Tanaka H; Yamashita K; Okachi R; Omura S
    J Antibiot (Tokyo); 1985 Oct; 38(10):1350-8. PubMed ID: 4066488
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Chemical modification of spiramycins. IV. Synthesis and in vitro and in vivo activities of 3'',4''-diacylates and 3,3'',4''-triacylates of spriamycin I.
    Sano H; Sunazuka T; Tanaka H; Yamashita K; Okachi R; Omura S
    J Antibiot (Tokyo); 1984 Jul; 37(7):760-72. PubMed ID: 6469870
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Chemical modification of spiramycins. I. Synthesis of the acetal derivatives of neospiramycin I.
    Sano H; Inoue M; Yamashita K; Okachi R; Omura S
    J Antibiot (Tokyo); 1983 Oct; 36(10):1336-44. PubMed ID: 6643282
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Chemical modification of spiramycins. II. Synthesis and antimicrobial activity of 4'-deoxy derivatives of neospiramycin I and their 12-(Z)-isomers.
    Sano H; Inoue M; Omura S
    J Antibiot (Tokyo); 1984 Jul; 37(7):738-49. PubMed ID: 6469868
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Chemical modification of spiramycins. V. Synthesis and antibacterial activity of 3'- or 4''-de-N-methylspiramycin I and their N-substituted derivatives.
    Sano H; Tanaka H; Yamashita K; Okachi R; Omura S
    J Antibiot (Tokyo); 1985 Feb; 38(2):186-96. PubMed ID: 3997666
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structure activity relationships of spiramycins.
    Omura S; Sano H; Sunazuka T
    J Antimicrob Chemother; 1985 Jul; 16 Suppl A():1-11. PubMed ID: 3902764
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Chemical modification of tylosin: synthesis of amino derivatives at C-20 position of tylosin and demycarosyltylosin.
    Matsubara H; Inokoshi J; Nakagawa A; Tanaka H; Omura S
    J Antibiot (Tokyo); 1983 Dec; 36(12):1713-21. PubMed ID: 6662813
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Spiramycin derivatives. 1].
    Takahira H
    Jpn J Antibiot; 1970 Aug; 23(4):424-8. PubMed ID: 5312794
    [No Abstract]   [Full Text] [Related]  

  • 10. Structure-activity relationships among the O-acyl derivatives of leucomycin. Correlation of minimal inhibitory concentrations with binding to Escherichia coli ribosomes.
    Omura S; Nakagawa A; Sakakibara H; Okekawa O; Brandsch R
    J Med Chem; 1977 May; 20(5):732-6. PubMed ID: 404425
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Syntheses of 23-C-alkylidene, and 23-N-containing derivatives of 5-O-mycaminosyltylonolide.
    Kajikawa N; Tsuchiya T; Umezawa S; Umezawa H
    J Antibiot (Tokyo); 1987 Apr; 40(4):476-82. PubMed ID: 3583916
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Spiramycin resistance in Staphylococcus aureus. The stoichiometry of spiramycin-binding to ribosomes from spiramycin-sensitive, intermediate- and high-resistant strains.
    Shimizu M; Saito T; Mitsuhashi S
    Jpn J Microbiol; 1970 Mar; 14(2):177-8. PubMed ID: 5309854
    [No Abstract]   [Full Text] [Related]  

  • 13. Novel dimeric derivatives of leucomycins and tylosin, sixteen-membered macrolides.
    Omura S; Miyano K; Matsubara H; Nakagawa A
    J Med Chem; 1982 Mar; 25(3):271-5. PubMed ID: 7040661
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Antagonistic interactions of macrolides and synergimycins on bacterial ribosomes.
    Di Giambattista M; Vannuffel P; Sunazuka T; Jacob T; Omura S; Cocito C
    J Antimicrob Chemother; 1986 Sep; 18(3):307-15. PubMed ID: 3095298
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [The pharmacokinetic studies on spiramycin and acetylspiramycin in rats].
    Inoue A; Deguchi T
    Jpn J Antibiot; 1982 Aug; 35(8):1998-2004. PubMed ID: 7154248
    [TBL] [Abstract][Full Text] [Related]  

  • 16. 1H-NMR and 13C-NMR spectral assignments of spiramycins I and III.
    Ramu K; Shringarpure S; Cooperwood S; Beale JM; Williams JS
    Pharm Res; 1994 Mar; 11(3):458-65. PubMed ID: 8008717
    [No Abstract]   [Full Text] [Related]  

  • 17. Sub-inhibitory and post-antibiotic effects of spiramycin and erythromycin on Staphylococcus aureus.
    Webster C; Ghazanfar K; Slack R
    J Antimicrob Chemother; 1988 Jul; 22 Suppl B():33-9. PubMed ID: 3182445
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Studies on acetylspiramycin. II. Biological activities of spiramycin components].
    Kondo A; Sato K; Shuto K; Yamashita K; Ichikawa S; Takahashi K; Kita K; Nishiie Y; Sano H; Yamaguchi K
    Jpn J Antibiot; 1990 Sep; 43(9):1521-9. PubMed ID: 2124632
    [TBL] [Abstract][Full Text] [Related]  

  • 19. N-Substituted derivatives of 23-amino-4',23-dideoxymycaminosyl tylonolide. Synthesis and antibacterial activity.
    Sakamoto S; Tsuchiya T; Tanaka A; Umezawa S; Hamada M; Umezawa H
    J Antibiot (Tokyo); 1985 Apr; 38(4):477-84. PubMed ID: 4008340
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Spiramycin resistance in Staphylococcus aureus. Decrease in spiramycin-accumulation and the ribosomal affinity of spiramycin in resistant staphylococci.
    Shimizu M; Saito T; Hashimoto H; Mitsuhashi S
    J Antibiot (Tokyo); 1970 Feb; 23(2):63-7. PubMed ID: 5416652
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 6.