These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
152 related articles for article (PubMed ID: 6469951)
1. The relation between the internal phosphorylation potential and the proton motive force in mitochondria during ATP synthesis and hydrolysis. Ogawa S; Lee TM J Biol Chem; 1984 Aug; 259(16):10004-11. PubMed ID: 6469951 [TBL] [Abstract][Full Text] [Related]
2. A 31P-NMR study of the cross-membrane pH gradient induced by ATP hydrolysis in mitochondria. Ogawa S; Shen C; Castillo CL Biochim Biophys Acta; 1980 Apr; 590(2):159-69. PubMed ID: 7370234 [TBL] [Abstract][Full Text] [Related]
3. Relationship of transmembrane pH and electrical gradients with respiration and adenosine 5'-triphosphate synthesis in mitochondria. Holian A; Wilson DF Biochemistry; 1980 Sep; 19(18):4213-21. PubMed ID: 7417402 [TBL] [Abstract][Full Text] [Related]
4. Influence of different energy drains on the interrelationship between the rate of respiration, proton-motive force and adenine nucleotide patterns in isolated mitochondria. Küster U; Letko G; Kunz W; Duszyńsky J; Bogucka K; Wojtczak L Biochim Biophys Acta; 1981 Jun; 636(1):32-8. PubMed ID: 7284343 [TBL] [Abstract][Full Text] [Related]
5. Evidence for energy-dependent change in phosphate binding for mitochondrial oxidative phosphorylation based on measurements of medium and intermediate phosphate-water exchanges. Rosing J; Kayalar C; Boyer PD J Biol Chem; 1977 Apr; 252(8):2478-85. PubMed ID: 140165 [TBL] [Abstract][Full Text] [Related]
6. The ATP-to-oxygen stoichiometries of oxidative phosphorylation by rat liver mitochondria. An analysis of ADP-induced oxygen jumps by linear nonequilibrium thermodynamics. Lemasters JJ J Biol Chem; 1984 Nov; 259(21):13123-30. PubMed ID: 6548475 [TBL] [Abstract][Full Text] [Related]
7. Non-equilibrium thermodynamics of oxidative phosphorylation by inverted inner membrane vesicles of rat liver mitochondria. Lemasters JJ; Billica WH J Biol Chem; 1981 Dec; 256(24):12949-57. PubMed ID: 7309743 [TBL] [Abstract][Full Text] [Related]
8. The phosphorus/oxygen ratio of mitochondrial oxidative phosphorylation. Hinkle PC; Yu ML J Biol Chem; 1979 Apr; 254(7):2450-5. PubMed ID: 34606 [TBL] [Abstract][Full Text] [Related]
9. Relationship between the energy cost of ATP transport and ATP synthesis in mitochondria. Duszyński J; Bogucka K; Letko G; Küster U; Kunz W; Wojtczak L Biochim Biophys Acta; 1981 Sep; 637(2):217-23. PubMed ID: 7295709 [TBL] [Abstract][Full Text] [Related]
10. Functional relationship between the ADP/ATP-carrier and the F1-ATPase in mitochondria. Vignais PV; Vignais PM; Doussiere J Biochim Biophys Acta; 1975 Feb; 376(2):219-30. PubMed ID: 123160 [TBL] [Abstract][Full Text] [Related]
11. Electrochemical proton gradient across the cell membrane of Halobacterium halobium: effect of N,N'-dicyclohexylcarbodiimide, relation to intracellular adenosine triphosphate, adenosine diphosphate, and phosphate concentration, and influence of the potassium gradient. Michel H; Oesterhelt D Biochemistry; 1980 Sep; 19(20):4607-14. PubMed ID: 7426619 [TBL] [Abstract][Full Text] [Related]
12. The efficiencies of the component steps of oxidative phosphorylation. II. Experimental determination of the efficiencies in mitochondria and examination of the equivalence of membrane potential and pH gradient in phosphorylation. Jensen BD; Gunter KK; Gunter TE Arch Biochem Biophys; 1986 Jul; 248(1):305-23. PubMed ID: 3015029 [TBL] [Abstract][Full Text] [Related]
14. Oxidative phosphorylation in intact hepatocytes: quantitative characterization of the mechanisms of change in efficiency and cellular consequences. Leverve X; Sibille B; Devin A; Piquet MA; Espié P; Rigoulet M Mol Cell Biochem; 1998 Jul; 184(1-2):53-65. PubMed ID: 9746312 [TBL] [Abstract][Full Text] [Related]
15. An assessment of the role of proton leaks in the mechanistic stoichiometry of oxidative phosphorylation. Davis EJ; Davis-van Thienen WI Arch Biochem Biophys; 1991 Aug; 289(1):184-6. PubMed ID: 1654845 [TBL] [Abstract][Full Text] [Related]
16. Thermodynamic limits to the ATP/site stoichiometries of oxidative phosphorylation by rat liver mitochondria. Lemasters JJ; Grunwald R; Emaus RK J Biol Chem; 1984 Mar; 259(5):3058-63. PubMed ID: 6321493 [TBL] [Abstract][Full Text] [Related]
17. Dependence of flux size and efficiency of oxidative phosphorylation on external osmolarity in isolated rat liver mitochondria: role of adenine nucleotide carrier. Devin A; Guérin B; Rigoulet M Biochim Biophys Acta; 1996 Jan; 1273(1):13-20. PubMed ID: 8573591 [TBL] [Abstract][Full Text] [Related]
18. Cellular applications of 31P and 13C nuclear magnetic resonance. Shulman RG; Brown TR; Ugurbil K; Ogawa S; Cohen SM; den Hollander JA Science; 1979 Jul; 205(4402):160-6. PubMed ID: 36664 [TBL] [Abstract][Full Text] [Related]
19. Mechanisms of inhibition and uncoupling of respiration in isolated rat liver mitochondria by the general anesthetic 2,6-diisopropylphenol. Rigoulet M; Devin A; Avéret N; Vandais B; Guérin B Eur J Biochem; 1996 Oct; 241(1):280-5. PubMed ID: 8898917 [TBL] [Abstract][Full Text] [Related]
20. Conformational changes in cytochrome aa3 and ATP synthetase of the mitochondrial membrane and their role in mitochondrial energy transduction. Wikström MK; Saari HT Mol Cell Biochem; 1976 Mar; 11(1):17-33. PubMed ID: 5667 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]