BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 6470045)

  • 1. Identification and extraction of proteins that compose the triad junction of skeletal muscle.
    Caswell AH; Brunschwig JP
    J Cell Biol; 1984 Sep; 99(3):929-39. PubMed ID: 6470045
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Identification of a constituent of the junctional feet linking terminal cisternae to transverse tubules in skeletal muscle.
    Cadwell JJ; Caswell AH
    J Cell Biol; 1982 Jun; 93(3):543-50. PubMed ID: 6749861
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ultrastructural observations of isolated intact and fragmented junctions of skeletal muscle by use of tannic acid mordanting.
    Brunschwig JP; Brandt N; Caswell AH; Lukeman DS
    J Cell Biol; 1982 Jun; 93(3):533-42. PubMed ID: 6181070
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Preparation and morphology of sarcoplasmic reticulum terminal cisternae from rabbit skeletal muscle.
    Saito A; Seiler S; Chu A; Fleischer S
    J Cell Biol; 1984 Sep; 99(3):875-85. PubMed ID: 6147356
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Determinants of triad junction reformation: identification and isolation of an endogenous promotor for junction reformation in skeletal muscle.
    Corbett AM; Caswell AH; Brandt NR; Brunschwig JP
    J Membr Biol; 1985; 86(3):267-76. PubMed ID: 4046012
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Morphology of isolated triads.
    Mitchell RD; Saito A; Palade P; Fleischer S
    J Cell Biol; 1983 Apr; 96(4):1017-29. PubMed ID: 6187754
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The effects of detergent on the contractility and ultrastructure of frog skeletal muscle.
    Yoshioka T; Nagami K; Tamaki T; Nakano S
    Jpn J Physiol; 1986; 36(2):379-90. PubMed ID: 3735796
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Biochemical heterogeneity of skeletal-muscle microsomal membranes. Membrane origin, membrane specificity and fibre types.
    Salviati G; Volpe P; Salvatori S; Betto R; Damiani E; Margreth A; Pasquali-Ronchetti I
    Biochem J; 1982 Feb; 202(2):289-301. PubMed ID: 6284127
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Isolation of transverse tubule membranes from skeletal muscle: ion transport activity, reformation of triad junctions, and isolation of junctional spanning protein of triads.
    Caswell AH; Brandt NR; Brunschwig JP; Kawamoto RM
    Methods Enzymol; 1988; 157():68-84. PubMed ID: 2976472
    [No Abstract]   [Full Text] [Related]  

  • 10. Localization by immunoelectron microscopy of spanning protein of triad junction in terminal cisternae/triad vesicles.
    Kawamoto RM; Brunschwig JP; Caswell AH
    J Muscle Res Cell Motil; 1988 Aug; 9(4):334-43. PubMed ID: 3220950
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Calcium-dependent phospholipid binding proteins associated with the membranes of rabbit skeletal muscle.
    Melgunov VI; Mamedova NA; Akimova EI; Adzhimolaev TA
    FEBS Lett; 1990 Jan; 260(1):79-82. PubMed ID: 2105237
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Evidence for a tubulin-containing lipid-protein structural complex in ciliary membranes.
    Stephens RE
    J Cell Biol; 1985 Apr; 100(4):1082-90. PubMed ID: 3980579
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Connexins and the vacuolar proteolipid-like 16-kDa protein are not directly associated with each other but may be components of similar or the same gap junctional complexes.
    Finbow ME; Meagher L
    Exp Cell Res; 1992 Nov; 203(1):280-4. PubMed ID: 1330657
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Identification of polypeptides associated with sarcolemmal vesicles enriched in orthogonal arrays.
    Hatton JD; Cox GF; Miller AL; Nichol JA; Ellisman MH
    Biochim Biophys Acta; 1987 Nov; 904(2):373-80. PubMed ID: 2959324
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The solubilisation of boar sperm membranes by different detergents - a microscopic, MALDI-TOF MS, (31)P NMR and PAGE study on membrane lysis, extraction efficiency, lipid and protein composition.
    Jakop U; Fuchs B; Süss R; Wibbelt G; Braun B; Müller K; Schiller J
    Lipids Health Dis; 2009 Nov; 8():49. PubMed ID: 19906304
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Identification and characterization of the pore-forming protein in the outer membrane of rat liver mitochondria.
    Roos N; Benz R; Brdiczka D
    Biochim Biophys Acta; 1982 Apr; 686(2):204-14. PubMed ID: 7082663
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Identification of novel proteins unique to either transverse tubules (TS28) or the sarcolemma (SL50) in rabbit skeletal muscle.
    Jorgensen AO; Arnold W; Shen AC; Yuan SH; Gaver M; Campbell KP
    J Cell Biol; 1990 Apr; 110(4):1173-85. PubMed ID: 2157716
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structural evidence for direct interaction between the molecular components of the transverse tubule/sarcoplasmic reticulum junction in skeletal muscle.
    Block BA; Imagawa T; Campbell KP; Franzini-Armstrong C
    J Cell Biol; 1988 Dec; 107(6 Pt 2):2587-600. PubMed ID: 2849609
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fractionation of rat liver mitochondrial components after short treatments with Triton X-100.
    Barbero MC; Rial E; Otamendi JJ; Gurtubay JI; Goñi FM
    Int J Biochem; 1982; 14(10):933-40. PubMed ID: 7128910
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The action of non-ionic detergents on the extraction of phospholipids and proteins from rat liver and rabbit heart membranes.
    Thang NX; Farkas T; Wollemann M
    Acta Biochim Biophys Acad Sci Hung; 1980; 15(3):205-9. PubMed ID: 7445965
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.