BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

88 related articles for article (PubMed ID: 6470059)

  • 1. Effect of topical adenosine deaminase treatment on the functional hyperemic and hypoxic responses of cerebrocortical microcirculation.
    Dóra E; Koller A; Kovách AG
    J Cereb Blood Flow Metab; 1984 Sep; 4(3):447-57. PubMed ID: 6470059
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of theophylline treatment on the functional hyperaemic and hypoxic responses of cerebrocortical microcirculation.
    Dóra E
    Acta Physiol Hung; 1986; 68(2):183-97. PubMed ID: 3825555
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of adenosine and its stabile analogue 2-chloroadenosine on cerebrocortical microcirculation and NAD/NADH redox state.
    Dóra E
    Pflugers Arch; 1985 Jul; 404(3):208-13. PubMed ID: 4034367
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of topically administered epinephrine, norepinephrine, and acetylcholine on cerebrocortical circulation and the NAD/NADH redox state.
    Dóra E; Kovách AG
    J Cereb Blood Flow Metab; 1983 Jun; 3(2):161-9. PubMed ID: 6841463
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A simple cranial window technique for optical monitoring of cerebrocortical microcirculation and NAD/NADH redox state. Effect of mitochondrial electron transport inhibitors and anoxic anoxia.
    Dóra E
    J Neurochem; 1984 Jan; 42(1):101-8. PubMed ID: 6689684
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of the adrenergic beta receptor blocker propranolol on the dilatation of cerebrocortical vessels evoked by arterial hypoxia.
    Dóra E; Kovách AG
    Acta Physiol Hung; 1984; 63(1):35-41. PubMed ID: 6331065
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Further studies on reflectometric monitoring of cerebrocortical microcirculation. Importance of lactate anions in coupling between cerebral blood flow and metabolism.
    Dóra E
    Acta Physiol Hung; 1985; 66(2):199-211. PubMed ID: 4050463
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Determinants of brain activation-induced cortical NAD/NADH responses in vivo.
    Dóra E; Gyulai L; Kovách AG
    Brain Res; 1984 May; 299(1):61-72. PubMed ID: 6326966
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of the organic calcium antagonist D-600 on cerebrocortical vascular and redox responses evoked by adenosine, anoxia, and epilepsy.
    Kovách AG; Dóra E; Szedlacsek S; Koller A
    J Cereb Blood Flow Metab; 1983 Mar; 3(1):51-61. PubMed ID: 6822618
    [No Abstract]   [Full Text] [Related]  

  • 10. Role of hypoxia and acetylcholine in the regulation of cerebral blood flow.
    Dora E; Kovach AG
    Adv Exp Med Biol; 1987; 215():237-48. PubMed ID: 3673722
    [No Abstract]   [Full Text] [Related]  

  • 11. Effect of acute arterial hypo- and hypertension on cerebrocortical NAD/NADH redox state and vascular volume.
    Dóra E; Kovách AG
    J Cereb Blood Flow Metab; 1982; 2(2):209-19. PubMed ID: 7076733
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Glycolysis and epilepsy-induced changes in cerebrocortical NAD/NADH redox state.
    Dóra E
    J Neurochem; 1983 Dec; 41(6):1774-7. PubMed ID: 6644311
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Adenosine deaminase attenuates canine coronary vasodilation during systemic hypoxia.
    Merrill GF; Downey HF; Jones CE
    Am J Physiol; 1986 Apr; 250(4 Pt 2):H579-83. PubMed ID: 3963215
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Short-time adenosine deaminase interventions upon underperfused rat hearts in vitro--a test for the role of adenosine in the coronary flow control.
    Serban DN; Salichi LI; Brănişteanu DD; Haulică ID
    Physiologie; 1989; 26(1):17-23. PubMed ID: 2502780
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Adenosine deaminase attenuates canine coronary vasodilatation during regional non-ischaemic myocardial hypoxia.
    Merrill GF; Downey HF; Yonekura S; Watanabe N; Jones CE
    Cardiovasc Res; 1988 May; 22(5):345-50. PubMed ID: 3191518
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of surplus amount of oxygen on the cerebrocortical microcirculatory reactions associated to moderate arterial hypotension.
    Dóra E; Urbanics R
    Acta Physiol Hung; 1986; 67(2):213-21. PubMed ID: 3739745
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Moderate hypoxia: reactivity of pial arteries and local effect of theophylline.
    Haller C; Kuschinsky W
    J Appl Physiol (1985); 1987 Dec; 63(6):2208-15. PubMed ID: 3436859
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Contribution of adenosine to the regulation of cerebral blood flow: the role of calcium ions in the adenosine-induced cerebrocortical vasodilatation.
    Kovách AG; Dóra E
    Adv Exp Med Biol; 1984; 169():315-25. PubMed ID: 6731093
    [No Abstract]   [Full Text] [Related]  

  • 19. Adenosine deaminase attenuates norepinephrine-induced coronary functional hyperemia.
    Downey HF; Merrill GF; Yonekura S; Watanabe N; Jones CE
    Am J Physiol; 1988 Mar; 254(3 Pt 2):H417-24. PubMed ID: 3348422
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Reduction of contraction-induced arteriolar vasodilation by adenosine deaminase or theophylline.
    Proctor KG
    Am J Physiol; 1984 Aug; 247(2 Pt 2):H195-205. PubMed ID: 6465328
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.