These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 6470580)

  • 1. Bifurcations of nonlinear reaction-diffusion systems in oblate spheroids.
    Hunding A
    J Math Biol; 1984; 19(3):249-63. PubMed ID: 6470580
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Bifurcations in Turing systems of the second kind may explain blastula cleavage plane orientation.
    Hunding A
    J Math Biol; 1987; 25(2):109-21. PubMed ID: 3611977
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Morphogen prepatterns during mitosis and cytokinesis in flattened cells: three dimensional Turing structures of reaction-diffusion systems in cylindrical coordinates.
    Hunding A
    J Theor Biol; 1985 Jun; 114(4):571-88. PubMed ID: 4021507
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Size adaptation of Turing prepatterns.
    Hunding A; Sørensen PG
    J Math Biol; 1988; 26(1):27-39. PubMed ID: 3351393
    [TBL] [Abstract][Full Text] [Related]  

  • 5. On the concentration profile of a growth inhibitory factor in multicell spheroids.
    Chaplain MA; Britton NF
    Math Biosci; 1993 Jun; 115(2):233-43. PubMed ID: 8507991
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A polarization model overcoming the geometric restrictions of the laplace solution for spheroidal cells: obtaining new equations for field-induced forces and transmembrane potential.
    Gimsa J; Wachner D
    Biophys J; 1999 Sep; 77(3):1316-26. PubMed ID: 10465744
    [TBL] [Abstract][Full Text] [Related]  

  • 7. From stripes to spots: prepatterns which can be produced in the skin by a reaction-diffusion system.
    Nagorcka BN; Mooney JR
    IMA J Math Appl Med Biol; 1992; 9(4):249-67. PubMed ID: 1302760
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Axial acoustic radiation force on rigid oblate and prolate spheroids in Bessel vortex beams of progressive, standing and quasi-standing waves.
    Mitri FG
    Ultrasonics; 2017 Feb; 74():62-71. PubMed ID: 27723472
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Wavelike isomorphic prepatterns in development.
    Nagorcka BN
    J Theor Biol; 1989 Mar; 137(2):127-62. PubMed ID: 2689795
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Unsuccessful mitosis in multicellular tumour spheroids.
    Molla A; Couvet M; Coll JL
    Oncotarget; 2017 Apr; 8(17):28769-28784. PubMed ID: 28430635
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Possible prepatterns governing mitosis: the mechanism of spindle-free chromosome movement in aulacantha Scolymantha.
    Hunding A
    J Theor Biol; 1981 Apr; 89(3):353-85. PubMed ID: 7278314
    [No Abstract]   [Full Text] [Related]  

  • 12. Scattering of an arbitrary order acoustical Bessel beam by a rigid off-axis spheroid.
    Li W; Wang M
    J Acoust Soc Am; 2018 Jun; 143(6):3676. PubMed ID: 29960428
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Light scattering properties of spheroidal particles.
    Asano S
    Appl Opt; 1979 Mar; 18(5):712-23. PubMed ID: 20208804
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Perturbation of homogeneous magnetic fields by isolated single and confocal spheroids. Implications for NMR spectroscopy of cells.
    Kuchel PW; Bulliman BT
    NMR Biomed; 1989 Nov; 2(4):151-60. PubMed ID: 2641496
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nonlinear pattern selection in a mechanical model for morphogenesis.
    Perelson AS; Maini PK; Murray JD; Hyman JM; Oster GF
    J Math Biol; 1986; 24(5):525-41. PubMed ID: 3805909
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Reaction-diffusion patterns in plant tip morphogenesis: bifurcations on spherical caps.
    Nagata W; Zangeneh HR; Holloway DM
    Bull Math Biol; 2013 Dec; 75(12):2346-71. PubMed ID: 24072659
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Pattern regulation in reaction-diffusion systems--the problem of size invariance.
    Babloyantz A; Bellemans A
    Bull Math Biol; 1985; 47(4):475-87. PubMed ID: 4084686
    [No Abstract]   [Full Text] [Related]  

  • 18. Solutions to systems of nonlinear reaction-diffusion equations.
    Rosen G
    Bull Math Biol; 1975 Jun; 37(3):277-89. PubMed ID: 1156701
    [No Abstract]   [Full Text] [Related]  

  • 19. On surface geometry coupled to morphogen.
    Cummings FW
    J Theor Biol; 1989 Mar; 137(2):215-9. PubMed ID: 2601347
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Introduction to 'Recent progress and open frontiers in Turing's theory of morphogenesis'.
    Krause AL; Gaffney EA; Maini PK; Klika V
    Philos Trans A Math Phys Eng Sci; 2021 Dec; 379(2213):20200280. PubMed ID: 34743606
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.