These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

79 related articles for article (PubMed ID: 647082)

  • 1. [Inhibition of acetylcholinesterase hydrolysis of cationic substrates by the reaction product].
    Kesvatera TA; Rozengart EV; Iarv IaL
    Biokhimiia; 1978 Feb; 43(2):334-9. PubMed ID: 647082
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Substrate binding to the peripheral site of acetylcholinesterase initiates enzymatic catalysis. Substrate inhibition arises as a secondary effect.
    Szegletes T; Mallender WD; Thomas PJ; Rosenberry TL
    Biochemistry; 1999 Jan; 38(1):122-33. PubMed ID: 9890890
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Unmasking tandem site interaction in human acetylcholinesterase. Substrate activation with a cationic acetanilide substrate.
    Johnson JL; Cusack B; Davies MP; Fauq A; Rosenberry TL
    Biochemistry; 2003 May; 42(18):5438-52. PubMed ID: 12731886
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Role of the peripheral anionic site on acetylcholinesterase: inhibition by substrates and coumarin derivatives.
    Radić Z; Reiner E; Taylor P
    Mol Pharmacol; 1991 Jan; 39(1):98-104. PubMed ID: 1987454
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Onchidal: a naturally occurring irreversible inhibitor of acetylcholinesterase with a novel mechanism of action.
    Abramson SN; Radic Z; Manker D; Faulkner DJ; Taylor P
    Mol Pharmacol; 1989 Sep; 36(3):349-54. PubMed ID: 2779521
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Quantitative structure-activity relationships for the pre-steady state acetylcholinesterase inhibition by carbamates.
    Lin G; Liao WC; Chan CH; Wu YH; Tsai HJ; Hsieh CW
    J Biochem Mol Toxicol; 2004; 18(6):353-60. PubMed ID: 15674842
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Conformers of acetylcholinesterase: a mechanism of allosteric control.
    Taylor JL; Mayer RT; Himel CM
    Mol Pharmacol; 1994 Jan; 45(1):74-83. PubMed ID: 8302283
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Propionylcholinesterases from the brain of Mollusca Interaction with substrates and inhibitors].
    Grigor'eva GM
    Biokhimiia; 1980 Dec; 45(12):2176-88. PubMed ID: 7248352
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Kinetics of inhibition of acetylcholinesterase in the presence of acetonitrile.
    Pietsch M; Christian L; Inhester T; Petzold S; Gütschow M
    FEBS J; 2009 Apr; 276(8):2292-307. PubMed ID: 19292865
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Interaction of tetrahydroaminoacridine with acetylcholinesterase and butyrylcholinesterase.
    Berman HA; Leonard K
    Mol Pharmacol; 1992 Feb; 41(2):412-8. PubMed ID: 1538717
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Binding of the neurotoxin fasciculin 2 to the acetylcholinesterase peripheral site drastically reduces the association and dissociation rate constants for N-methylacridinium binding to the active site.
    Rosenberry TL; Rabl CR; Neumann E
    Biochemistry; 1996 Jan; 35(3):685-90. PubMed ID: 8547248
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Flow microcalorimetric study of butyrylcholinesterase kinetics and inhibition.
    Debord J; Verneuil B; Bollinger JC; Merle L; Dantoine T
    Anal Biochem; 2006 Jul; 354(2):299-304. PubMed ID: 16725100
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Conformational differences in the sorption of choline ligands at the active site of acetylcholinesterase].
    Shestakova NN; Rozengart EV
    Bioorg Khim; 1995 May; 21(5):323-9. PubMed ID: 7661856
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Acetylcholinesterase. II. A study by nuclear magnetic resonance of the acceleration of acetylcholinesterase by atropine and inhibition by eserine.
    Kato G
    Mol Pharmacol; 1972 Sep; 8(5):582-8. PubMed ID: 5083615
    [No Abstract]   [Full Text] [Related]  

  • 15. Interaction of a fluorescent acyldicholine with the nicotinic acetylcholine receptor and acetylcholinesterase.
    Bolger MB; Dionne V; Chrivia J; Johnson DA; Taylor P
    Mol Pharmacol; 1984 Jul; 26(1):57-69. PubMed ID: 6547767
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Acetylcholinesterase: evidence that sodium ion binding at the anionic site causes inhibition of the second-order hydrolysis of acetylcholine and a decrease of its pKa as well as of deacetylation.
    Smissaert HR
    Biochem J; 1981 Jul; 197(1):163-70. PubMed ID: 7317028
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ion mobility spectrometry: a valuable tool for kinetic studies in enzymology.
    Armenta S; Blanco M
    Anal Chim Acta; 2011 Jan; 685(1):1-8. PubMed ID: 21168544
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Mechanism of the reaction of N,N-dimethyl-2-phenylaziridinium with acetylcholinesterase in its active site].
    Soomets UV; Palumaa PIa; Iarv IaL
    Bioorg Khim; 1987 Feb; 13(2):198-203. PubMed ID: 3580004
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Biochemical evaluation of photolabile precursors of choline and of carbamylcholine for potential time-resolved crystallographic studies on cholinesterases.
    Peng L; Silman I; Sussman J; Goeldner M
    Biochemistry; 1996 Aug; 35(33):10854-61. PubMed ID: 8718877
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The simulated binding of (+/-)-2,3-dihydro-5,6-dimethoxy-2-[[1-(phenylmethyl)-4-piperidinyl]meth yl] -1H-inden-1-one hydrochloride (E2020) and related inhibitors to free and acylated acetylcholinesterases and corresponding structure-activity analyses.
    Inoue A; Kawai T; Wakita M; Iimura Y; Sugimoto H; Kawakami Y
    J Med Chem; 1996 Oct; 39(22):4460-70. PubMed ID: 8893840
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.