These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 647107)

  • 41. Flash photolysis of visual pigments in solution--II. The effect of preparation on the observed kinetics.
    Bargoot FG; Williams TP
    Vision Res; 1977 Feb; 17(2):165-8. PubMed ID: 867835
    [No Abstract]   [Full Text] [Related]  

  • 42. Bleaching intermediate kinetics of rhodopsin, metarhodopsin I, metarhodopsin II.
    Williams TP; Baker BN
    Methods Enzymol; 1982; 81():374-7. PubMed ID: 7098883
    [No Abstract]   [Full Text] [Related]  

  • 43. Orientational changes of the absorbing dipole or retinal upon the conversion of rhodopsin to bathorhodopsin, lumirhodopsin, and isorhodopsin.
    Michel-Villaz M; Roche C; Chabre M
    Biophys J; 1982 Mar; 37(3):603-16. PubMed ID: 6978738
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Fast stages of photoelectric processes in biological membranes. II. Visual rhodopsin.
    Drachev LA; Kalamkarov GR; Kaulen AD; Ostrovsky MA; Skulachev VP
    Eur J Biochem; 1981 Jul; 117(3):471-81. PubMed ID: 7285901
    [TBL] [Abstract][Full Text] [Related]  

  • 45. TAUTOMERIC FORMS OF METARHODOPSIN.
    MATTHEWS RG; HUBBARD R; BROWN PK; WALD G
    J Gen Physiol; 1963 Nov; 47(2):215-40. PubMed ID: 14080814
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Effect of GTP on the rhodopsin-G-protein complex by transient formation of extra metarhodopsin II.
    Hofmann KP
    Biochim Biophys Acta; 1985 Nov; 810(2):278-81. PubMed ID: 3933561
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Fluorescence relaxation kinetics from rhodopsin and isorhodopsin.
    Doukas AG; Lu PY; Alfano RR
    Biophys J; 1981 Aug; 35(2):547-50. PubMed ID: 7272451
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Fourier-transform infrared difference spectroscopy of rhodopsin and its photoproducts at low temperature.
    Bagley KA; Balogh-Nair V; Croteau AA; Dollinger G; Ebrey TG; Eisenstein L; Hong MK; Nakanishi K; Vittitow J
    Biochemistry; 1985 Oct; 24(22):6055-71. PubMed ID: 4084506
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Coupled HOOP signature correlates with quantum yield of isorhodopsin and analog pigments.
    Bovee-Geurts PHM; Lugtenburg J; DeGrip WJ
    Biochim Biophys Acta Bioenerg; 2017 Feb; 1858(2):118-125. PubMed ID: 27836700
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Two intermediates appear on the lumirhodopsin time scale after rhodopsin photoexcitation.
    Szundi I; Lewis JW; Kliger DS
    Biochemistry; 2003 May; 42(17):5091-8. PubMed ID: 12718552
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Kinetic study on the equilibrium between membrane-bound and free photoreceptor G-protein.
    Schleicher A; Hofmann KP
    J Membr Biol; 1987; 95(3):271-81. PubMed ID: 3585982
    [TBL] [Abstract][Full Text] [Related]  

  • 52. The effect of Ca2+ on the metarhodopsin I-II transition. I. Experiments.
    Emrich HM; Reich R
    Pflugers Arch; 1976 Jun; 364(1):17-21. PubMed ID: 8762
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Effects of temperature on rhodopsin photointermediates from lumirhodopsin to metarhodopsin II.
    Thorgeirsson TE; Lewis JW; Wallace-Williams SE; Kliger DS
    Biochemistry; 1993 Dec; 32(50):13861-72. PubMed ID: 8268161
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Studies on cephalopod rhodopsin: photoisomerization of the chromophore.
    Suzuki T; Uji K; Kito Y
    Biochim Biophys Acta; 1976 Apr; 428(2):321-38. PubMed ID: 1276163
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Membrane lipid influences on the energetics of the metarhodopsin I and metarhodopsin II conformational states of rhodopsin probed by flash photolysis.
    Gibson NJ; Brown MF
    Photochem Photobiol; 1991 Dec; 54(6):985-92. PubMed ID: 1775536
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Rhodopsin photoproducts and rod sensitivity in the skate retina.
    Brin KP; Ripps H
    J Gen Physiol; 1977 Jan; 69(1):97-120. PubMed ID: 833567
    [TBL] [Abstract][Full Text] [Related]  

  • 57. The products of photoreversing rhodopsin bleaching by microsecond flashes in the isolated vertebrate retina.
    Catt M; Ernst W; Kemp CM
    Vision Res; 1983; 23(10):971-82. PubMed ID: 6606261
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Rushton's paradox: rod dark adaptation after flash photolysis.
    Pugh EN
    J Physiol; 1975 Jun; 248(2):413-31. PubMed ID: 1151791
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Photolysis of rhodopsin results in deprotonation of its retinal Schiff's base prior to formation of metarhodopsin II.
    Thorgeirsson TE; Lewis JW; Wallace-Williams SE; Kliger DS
    Photochem Photobiol; 1992 Dec; 56(6):1135-44. PubMed ID: 1337214
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Photolysis intermediates of the artificial visual pigment cis-5,6-dihydro-isorhodopsin.
    Albeck A; Friedman N; Ottolenghi M; Sheves M; Einterz CM; Hug SJ; Lewis JW; Kliger DS
    Biophys J; 1989 Feb; 55(2):233-41. PubMed ID: 2713437
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.