These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

163 related articles for article (PubMed ID: 6472732)

  • 1. Synaptogenesis in the chick cervical cord and possible initial central pathways from dorsal root fibers to motor neurons--Golgi and electron microscopic studies.
    Kanemitsu A; Matsuda S
    Neurosci Lett; 1984 Jul; 48(1):1-6. PubMed ID: 6472732
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Morphological aspects of formation of neuronal pathways in the chick spinal cord--Golgi and electron microscopic studies.
    Kanemitsu A; Matsuda S; Kobayashi Y
    Acta Neurochir Suppl (Wien); 1987; 41():78-84. PubMed ID: 3481942
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The relationship of dorsal root afferents to motoneuron somata and dendrites in the adult bullfrog: a light and electron microscopic study using horseradish peroxidase.
    Liuzzi FJ; Beattie MS; Bresnahan JC
    Neuroscience; 1984 Apr; 11(4):951-61. PubMed ID: 6610840
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Axonal projections and synaptogenesis by supraspinal descending neurons in the spinal cord of the chick embryo.
    Shiga T; Künzi R; Oppenheim RW
    J Comp Neurol; 1991 Mar; 305(1):83-95. PubMed ID: 1709651
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dorsal root afferents contact migrating motoneurons in the developing frog spinal cord.
    Liuzzi FJ; Beattie MS; Bresnahan JC
    Brain Res; 1983 Mar; 262(2):299-302. PubMed ID: 6601507
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Motor and dorsal root ganglion axons serve as choice points for the ipsilateral turning of dI3 axons.
    Avraham O; Hadas Y; Vald L; Hong S; Song MR; Klar A
    J Neurosci; 2010 Nov; 30(46):15546-57. PubMed ID: 21084609
    [TBL] [Abstract][Full Text] [Related]  

  • 7. White-matter dendrites in the upper cervical spinal cord of the adult cat: a light and electron microscopic study.
    Rose PK; Richmond FJ
    J Comp Neurol; 1981 Jun; 199(2):191-203. PubMed ID: 7251939
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The central cervical nucleus in the cat. I. A Golgi study.
    Wiksten B
    Exp Brain Res; 1979 Jun; 36(1):143-54. PubMed ID: 381012
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Spinal motoneurons of the goldfish, carassius auratus.
    Schnitzlein HN; Brown HK
    Brain Behav Evol; 1975; 12(4-6):207-28. PubMed ID: 1225463
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Calcium-binding proteins, parvalbumin- and calbindin-D 28k-immunoreactive neurons in the rat spinal cord and dorsal root ganglia: a light and electron microscopic study.
    Antal M; Freund TF; Polgár E
    J Comp Neurol; 1990 May; 295(3):467-84. PubMed ID: 2351764
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mechanisms that initiate spontaneous network activity in the developing chick spinal cord.
    Wenner P; O'Donovan MJ
    J Neurophysiol; 2001 Sep; 86(3):1481-98. PubMed ID: 11535692
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Axon and dendrite geography predict the specificity of synaptic connections in a functioning spinal cord network.
    Li WC; Cooke T; Sautois B; Soffe SR; Borisyuk R; Roberts A
    Neural Dev; 2007 Sep; 2():17. PubMed ID: 17845723
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Pathfinding by growth cones of commissural interneurons in the chick embryo spinal cord: a light and electron microscopic study.
    Yaginuma H; Homma S; Künzi R; Oppenheim RW
    J Comp Neurol; 1991 Feb; 304(1):78-102. PubMed ID: 2016414
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Some aspects of synaptogenesis in the spinal cord of the chick embryo: a quantitative electron microscopic study.
    Oppenheim RW; Chu-Wang IW; Foelix RF
    J Comp Neurol; 1975 Jun; 161(3):383-418. PubMed ID: 1150915
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Synaptic targets of commissural interneurons in the lumbar spinal cord of neonatal rats.
    Birinyi A; Viszokay K; Wéber I; Kiehn O; Antal M
    J Comp Neurol; 2003 Jul; 461(4):429-40. PubMed ID: 12746860
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Termination of supraspinal descending pathways in the spinal cord of the tegu lizard, Tupinambis nigropunctatus.
    Cruce WL
    Brain Behav Evol; 1975; 12(4-6):247-9. PubMed ID: 1225465
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A confocal and electron microscopic study of contacts between 5-HT fibres and feline dorsal horn interneurons in pathways from muscle afferents.
    Jankowska E; Maxwell DJ; Dolk S; Dahlström A
    J Comp Neurol; 1997 Oct; 387(3):430-8. PubMed ID: 9335425
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Distribution of 125I-galanin binding sites, immunoreactive galanin, and its coexistence with 5-hydroxytryptamine in the cat spinal cord: biochemical, histochemical, and experimental studies at the light and electron microscopic level.
    Arvidsson U; Ulfhake B; Cullheim S; Bergstrand A; Theodorson E; Hökfelt T
    J Comp Neurol; 1991 Jun; 308(1):115-38. PubMed ID: 1714921
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The development of the cervical spinal cord of the mouse embryo. II. A Golgi analysis of sensory, commissural, and association cell differentiation.
    Wentworth LE
    J Comp Neurol; 1984 Jan; 222(1):96-115. PubMed ID: 6699204
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Synapses on axons of sympathetic preganglionic neurons in rat and rabbit thoracic spinal cord.
    Llewellyn-Smith IJ; Pilowsky P; Minson JB; Chalmers J
    J Comp Neurol; 1995 Apr; 354(2):193-208. PubMed ID: 7782498
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.