These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 6473057)

  • 1. Understanding brains by comparing taxa.
    Bullock TH
    Perspect Biol Med; 1984; 27(4):510-24. PubMed ID: 6473057
    [No Abstract]   [Full Text] [Related]  

  • 2. Evolution of vertebrate motor systems for acoustic and electric communication: peripheral and central elements.
    Bass AH
    Brain Behav Evol; 1989; 33(4):237-47. PubMed ID: 2667693
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparative physiology: electric organs.
    Bennett MV
    Annu Rev Physiol; 1970; 32():471-528. PubMed ID: 4906125
    [No Abstract]   [Full Text] [Related]  

  • 4. The evolution of vertebrate electrosensory systems.
    New JG
    Brain Behav Evol; 1997; 50(4):244-52. PubMed ID: 9310199
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [Signal (biological) fields and their significance for animals].
    Naumov NP
    Zh Obshch Biol; 1973; 34(6):808-17. PubMed ID: 4779686
    [No Abstract]   [Full Text] [Related]  

  • 6. Electroreception in lampreys: evidence that the earliest vertebrates were electroreceptive.
    Bodznick D; Northcutt RG
    Science; 1981 Apr; 212(4493):465-7. PubMed ID: 7209544
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Active electroreception in Gymnotus omari: imaging, object discrimination, and early processing of actively generated signals.
    Caputi AA; Castelló ME; Aguilera PA; Pereira C; Nogueira J; Rodríguez-Cattaneo A; Lezcano C
    J Physiol Paris; 2008; 102(4-6):256-71. PubMed ID: 18992336
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Experience-Dependent Plasticity Drives Individual Differences in Pheromone-Sensing Neurons.
    Xu PS; Lee D; Holy TE
    Neuron; 2016 Aug; 91(4):878-892. PubMed ID: 27537487
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Not all brains are made the same: new views on brain scaling in evolution.
    Herculano-Houzel S
    Brain Behav Evol; 2011; 78(1):22-36. PubMed ID: 21691045
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Associative learning and sensory neuroplasticity: how does it happen and what is it good for?
    McGann JP
    Learn Mem; 2015 Nov; 22(11):567-76. PubMed ID: 26472647
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Duration of plastic change in a modifiable efference copy.
    Bell CC
    Brain Res; 1986 Mar; 369(1-2):29-36. PubMed ID: 3697745
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The phylogenetic distribution of electroreception: evidence for convergent evolution of a primitive vertebrate sense modality.
    Bullock TH; Bodznick DA; Northcutt RG
    Brain Res; 1983 Aug; 287(1):25-46. PubMed ID: 6616267
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Neurodynamic correlates of the coding and decoding of information.
    Bundzen PV; Trubachev VV; Kropotov YD
    Hum Physiol; 1978; 4(3):431-47. PubMed ID: 223967
    [No Abstract]   [Full Text] [Related]  

  • 14. Train signals for electric fish.
    Maler L
    Nature; 1996 Dec; 384(6609):517-8. PubMed ID: 8955265
    [No Abstract]   [Full Text] [Related]  

  • 15. Localization of vitamin D-dependent calcium binding protein in the electrosensory and electromotor system of high frequency gymnotid fish.
    Maler L; Jande S; Lawson EM
    Brain Res; 1984 May; 301(1):166-70. PubMed ID: 6329441
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Electroreceptor mechanisms in mormyrid fish.
    Szabo T
    Neurosci Res Program Bull; 1970 Dec; 8(5):499-501. PubMed ID: 5527320
    [No Abstract]   [Full Text] [Related]  

  • 17. [Instantaneous variations in the rhythm of the electric organ of the mormyrid Gnathonemus petersii caused by an artificial electric stimulation of its electroreceptors].
    Serrier J
    J Physiol (Paris); 1973; 66(6):713-28. PubMed ID: 4794483
    [No Abstract]   [Full Text] [Related]  

  • 18. The distribution of acetylcholinesterase and choline acetyl transferase in the cerebellum and posterior lateral line lobe of weakly electric fish (Gymnotidae).
    Maler L; Collins M; Mathieson WB
    Brain Res; 1981 Dec; 226(1-2):320-5. PubMed ID: 7296295
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Coding in tuberous and ampullary organs of a gymnotid electric fish.
    Suga N
    J Comp Neurol; 1967 Dec; 131(4):437-52. PubMed ID: 5582289
    [No Abstract]   [Full Text] [Related]  

  • 20. Neural Mechanisms for Predicting the Sensory Consequences of Behavior: Insights from Electrosensory Systems.
    Sawtell NB
    Annu Rev Physiol; 2017 Feb; 79():381-399. PubMed ID: 27813831
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.