These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
4. Spacer promoters are essential for efficient enhancement of X. laevis ribosomal transcription. De Winter RF; Moss T Cell; 1986 Jan; 44(2):313-8. PubMed ID: 3943126 [TBL] [Abstract][Full Text] [Related]
5. Transcription of cloned Xenopus laevis ribosomal DNA microinjected into Xenopus oocytes, and the identification of an RNA polymerase I promoter. Moss T Cell; 1982 Oct; 30(3):835-42. PubMed ID: 7139716 [TBL] [Abstract][Full Text] [Related]
6. A transcriptional function for the repetitive ribosomal spacer in Xenopus laevis. Moss T Nature; 1983 Mar 17-23; 302(5905):223-8. PubMed ID: 6835360 [TBL] [Abstract][Full Text] [Related]
7. Transcription in oocytes of highly methylated rDNA from Xenopus laevis sperm. Macleod D; Bird A Nature; 1983 Nov 10-16; 306(5939):200-3. PubMed ID: 6646203 [TBL] [Abstract][Full Text] [Related]
8. Effect of intercalating agents on RNA polymerase I promoter selection in Xenopus laevis. Pruitt SC; Reeder RH Mol Cell Biol; 1984 Dec; 4(12):2851-7. PubMed ID: 6543244 [TBL] [Abstract][Full Text] [Related]
9. Enhancer-like properties of the 60/81 bp elements in the ribosomal gene spacer of Xenopus laevis. Labhart P; Reeder RH Cell; 1984 May; 37(1):285-9. PubMed ID: 6722873 [TBL] [Abstract][Full Text] [Related]
10. Functional analysis of Arabidopsis thaliana rRNA gene and spacer promoters in vivo and by transient expression. Doelling JH; Gaudino RJ; Pikaard CS Proc Natl Acad Sci U S A; 1993 Aug; 90(16):7528-32. PubMed ID: 8356050 [TBL] [Abstract][Full Text] [Related]
12. Characterization of two types of ribosomal gene transcription in Xenopus laevis oocytes. Labhart P Gene Expr; 1992; 2(4):409-23. PubMed ID: 1472871 [TBL] [Abstract][Full Text] [Related]
13. Nested control regions promote Xenopus ribosomal RNA synthesis by RNA polymerase I. Sollner-Webb B; Wilkinson JA; Roan J; Reeder RH Cell; 1983 Nov; 35(1):199-206. PubMed ID: 6684995 [TBL] [Abstract][Full Text] [Related]
14. Accurate transcription of cloned Xenopus rRNA genes by RNA polymerase I: demonstration by S1 nuclease mapping. Sollner-Webb B; McKnight SL Nucleic Acids Res; 1982 Jun; 10(11):3391-405. PubMed ID: 6285299 [TBL] [Abstract][Full Text] [Related]
15. Sequence differences upstream of the promoters are involved in the differential expression of the Xenopus somatic and oocyte 5S RNA genes. Reynolds WF; Azer K Nucleic Acids Res; 1988 Apr; 16(8):3391-403. PubMed ID: 3375059 [TBL] [Abstract][Full Text] [Related]
16. A 140-base-pair repetitive sequence element in the mouse rRNA gene spacer enhances transcription by RNA polymerase I in a cell-free system. Kuhn A; Deppert U; Grummt I Proc Natl Acad Sci U S A; 1990 Oct; 87(19):7527-31. PubMed ID: 2217183 [TBL] [Abstract][Full Text] [Related]
17. Ribosomal gene promoter domains can function as artificial enhancers of RNA polymerase I transcription, supporting a promoter origin for natural enhancers in Xenopus. Pikaard CS Proc Natl Acad Sci U S A; 1994 Jan; 91(2):464-8. PubMed ID: 8290549 [TBL] [Abstract][Full Text] [Related]
18. DNaseI-hypersensitive sites at promoter-like sequences in the spacer of Xenopus laevis and Xenopus borealis ribosomal DNA. La Volpe A; Taggart M; McStay B; Bird A Nucleic Acids Res; 1983 Aug; 11(16):5361-80. PubMed ID: 6310495 [TBL] [Abstract][Full Text] [Related]
19. In vitro methylation of HpaII sites in Xenopus laevis rDNA does not affect its transcription in oocytes. Pennock DG; Reeder RH Nucleic Acids Res; 1984 Feb; 12(4):2225-32. PubMed ID: 6199746 [TBL] [Abstract][Full Text] [Related]
20. Faithful in vivo transcription termination of Xenopus laevis rDNA. Correlation of electron microscopic spread preparations with S1 transcript analysis. Meissner B; Hofmann A; Steinbeisser H; Spring H; Miller OL; Trendelenburg MF Chromosoma; 1991 Dec; 101(4):222-30. PubMed ID: 1773661 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]