These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3. Plasma membrane phospholipid organization in human erythrocytes. Schwartz RS; Chiu DT; Lubin B Curr Top Hematol; 1985; 5():63-112. PubMed ID: 3882343 [TBL] [Abstract][Full Text] [Related]
4. Interaction of membrane skeletal proteins with membrane lipid domain. Sikorski AF; Hanus-Lorenz B; Jezierski A; Dluzewski AR Acta Biochim Pol; 2000; 47(3):565-78. PubMed ID: 11310960 [TBL] [Abstract][Full Text] [Related]
5. The adhesive sickle erythrocyte: cause and consequence of abnormal interactions with endothelium, monocytes/macrophages and model membranes. Hebbel RP; Schwartz RS; Mohandas N Clin Haematol; 1985 Feb; 14(1):141-61. PubMed ID: 3886233 [TBL] [Abstract][Full Text] [Related]
6. Auto-oxidation and a membrane-associated 'Fenton reagent': a possible explanation for development of membrane lesions in sickle erythrocytes. Hebbel RP Clin Haematol; 1985 Feb; 14(1):129-40. PubMed ID: 2985310 [TBL] [Abstract][Full Text] [Related]
7. The structural organization of skeletal proteins influences lipid translocation across erythrocyte membrane. Mohandas N; Rossi M; Bernstein S; Ballas S; Ravindranath Y; Wyatt J; Mentzer W J Biol Chem; 1985 Nov; 260(26):14264-8. PubMed ID: 4055777 [TBL] [Abstract][Full Text] [Related]
8. [Molecular interactions of membrane proteins and erythrocyte deformability]. Boivin P Pathol Biol (Paris); 1984 Jun; 32(6):717-35. PubMed ID: 6235477 [TBL] [Abstract][Full Text] [Related]
10. Membrane-associated cytoskeleton and transbilayer phospholipid asymmetry. Gupta CM Indian J Biochem Biophys; 1990 Dec; 27(6):365-7. PubMed ID: 2102481 [TBL] [Abstract][Full Text] [Related]
11. [Molecular interactions of membrane proteins and erythrocyte deformability]. Boivin P Acta Med Port; 1983 Apr; Suppl():13-36. PubMed ID: 6224399 [No Abstract] [Full Text] [Related]
12. Membrane phospholipid organization in pathologic human erythrocytes. Lubin B; Chiu D Prog Clin Biol Res; 1982; 97():137-50. PubMed ID: 7156165 [No Abstract] [Full Text] [Related]
13. Abnormalities of cell-membrane fluidity in the pathogenesis of disease. Cooper RA N Engl J Med; 1977 Aug; 297(7):371-7. PubMed ID: 327326 [No Abstract] [Full Text] [Related]
14. Pathology of membrane proteins in sickle erythrocytes. Platt OS Ann N Y Acad Sci; 1989; 565():83-5. PubMed ID: 2528313 [No Abstract] [Full Text] [Related]
15. Some morphological consequences of uncoupling the lipid bilayer from the plasma membrane skeleton in intact erythrocytes. Allan D; Raval P Biomed Biochim Acta; 1983; 42(11-12):S11-6. PubMed ID: 6675679 [TBL] [Abstract][Full Text] [Related]
16. Membrane protein and organization in normal and hemoglobinopathic red cells. Palek J Tex Rep Biol Med; 1980-1981; 40():397-416. PubMed ID: 6459658 [No Abstract] [Full Text] [Related]
17. Studies on human erythrocyte spectrin.4.1.actin complex with the use of cytochalasins. Lin DC Prog Clin Biol Res; 1981; 56():117-36. PubMed ID: 7330006 [No Abstract] [Full Text] [Related]
18. Interaction of a peripheral protein of the erythrocyte membrane, band 4.1, with phosphatidylserine-containing liposomes and erythrocyte inside-out vesicles. Sato SB; Ohnishi S Eur J Biochem; 1983 Jan; 130(1):19-25. PubMed ID: 6297895 [TBL] [Abstract][Full Text] [Related]
19. Active calcium transport in normal and abnormal human erythrocytes. Al-Jobore A; Minocherhomjee AM; Villalobo A; Roufogalis BD Prog Clin Biol Res; 1984; 159():243-92. PubMed ID: 6236466 [No Abstract] [Full Text] [Related]
20. Cytoskeletal protein binding kinetics at planar phospholipid membranes. Mc Kiernan AE; MacDonald RI; MacDonald RC; Axelrod D Biophys J; 1997 Oct; 73(4):1987-98. PubMed ID: 9336194 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]