These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

97 related articles for article (PubMed ID: 647373)

  • 1. The electromicrophysiology of delta waves induced by systemic atropine.
    Schaul N; Gloor P; Ball G; Gotman J
    Brain Res; 1978 Mar; 143(3):475-86. PubMed ID: 647373
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cholinergic mechanisms in the production of focal cortical slow waves.
    Spehlmann R; Norcross K
    Experientia; 1982 Jan; 38(1):109-11. PubMed ID: 7056349
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The cortical electromicrophysiology of pathological delta waves in the electroencephalogram of cats.
    Ball GJ; Gloor P; Schaul N
    Electroencephalogr Clin Neurophysiol; 1977 Sep; 43(3):346-61. PubMed ID: 70336
    [No Abstract]   [Full Text] [Related]  

  • 4. Changes in hippocampal and cortical EEG after intraventricular administration of cholinolytics in rabbit and cat.
    Gralewicz S; Gralewicz K
    Acta Neurobiol Exp (Wars); 1988; 48(6):323-34. PubMed ID: 3251407
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The role of cholinergic mechanisms in the corticofugal inhibition of the spinal trigeminal nucleus.
    Fromm GH; Glass JD; Chattha AS
    Electroencephalogr Clin Neurophysiol; 1979 Mar; 46(3):302-9. PubMed ID: 85523
    [No Abstract]   [Full Text] [Related]  

  • 6. The effects of a spirolactone derivative on EEG and cortical single unit activity in the cat.
    Straschill M; Schick F
    Electroencephalogr Clin Neurophysiol; 1975 Nov; 39(5):473-7. PubMed ID: 52440
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cholinergic Switch between Two Types of Slow Waves in Cerebral Cortex.
    Nghiem TE; Tort-Colet N; Górski T; Ferrari U; Moghimyfiroozabad S; Goldman JS; Teleńczuk B; Capone C; Bal T; di Volo M; Destexhe A
    Cereb Cortex; 2020 May; 30(6):3451-3466. PubMed ID: 31989160
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Acetylcholine inhibition in the intact and chronically isolated cerebral cortex.
    Jordan LM; Phillis JW
    Br J Pharmacol; 1972 Aug; 45(4):584-95. PubMed ID: 5085232
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Physiology, pharmacology, and topography of cholinergic neocortical oscillations in vitro.
    Lukatch HS; MacIver MB
    J Neurophysiol; 1997 May; 77(5):2427-45. PubMed ID: 9163368
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Tonic and phasic influence of basal forebrain unit activity on the cortical EEG.
    Détári L
    Behav Brain Res; 2000 Nov; 115(2):159-70. PubMed ID: 11000418
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An analysis of penicillin-induced generalized spike and wave discharges using simultaneous recordings of cortical and thalamic single neurons.
    Avoli M; Gloor P; Kostopoulos G; Gotman J
    J Neurophysiol; 1983 Oct; 50(4):819-37. PubMed ID: 6631465
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Topographic mapping of the cortical EEG power in the unrestrained rat: peripheral effects of neuroactive drugs.
    Bringmann A
    Arch Ital Biol; 1995 Jan; 133(1):1-16. PubMed ID: 7748058
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Computed unit-EEG correlations and laminar profiles of spindle waves in the electroencephalogram of cats.
    Ball GJ; Gloor P; Thompson CJ
    Electroencephalogr Clin Neurophysiol; 1977 Sep; 43(3):330-45. PubMed ID: 70335
    [No Abstract]   [Full Text] [Related]  

  • 14. Acetylcholine facilitation, atropine block of synaptic excitation of cortical neurons.
    Spehlmann R
    Science; 1969 Jul; 165(3891):404-5. PubMed ID: 4307055
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Brain lesions that produce delta waves in the EEG.
    Gloor P; Ball G; Schaul N
    Neurology; 1977 Apr; 27(4):326-33. PubMed ID: 557774
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [The mechanisms behind the generation of the slow oscillations found in EEG recordings during sleep].
    Núñez-Molina A; Amzica F
    Rev Neurol; 2004 Oct 1-15; 39(7):628-33. PubMed ID: 15490348
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [EEG-effects of atropine. Study on 16 patients (author's transl)].
    Pichlmayr I; Lips U
    Anaesthesist; 1980 May; 29(5):249-53. PubMed ID: 7425257
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cortical neuronal activity does not regulate sleep homeostasis.
    Qiu MH; Chen MC; Lu J
    Neuroscience; 2015 Jun; 297():211-8. PubMed ID: 25864961
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Effect of phentolamine on the electroencephalogram and pulse activity of the cortical neurons].
    Iasnetsov VS; Pravdivtsev VA; Kozlov SN; Kostiuchenkov VN
    Farmakol Toksikol; 1977; 40(6):688-90. PubMed ID: 598491
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Spindle oscillation in cats: the role of corticothalamic feedback in a thalamically generated rhythm.
    Contreras D; Steriade M
    J Physiol; 1996 Jan; 490 ( Pt 1)(Pt 1):159-79. PubMed ID: 8745285
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.