These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

275 related articles for article (PubMed ID: 6474173)

  • 1. Control of extracellular potassium levels by retinal glial cell K+ siphoning.
    Newman EA; Frambach DA; Odette LL
    Science; 1984 Sep; 225(4667):1174-5. PubMed ID: 6474173
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Regional specialization of the membrane of retinal glial cells and its importance to K+ spatial buffering.
    Newman EA
    Ann N Y Acad Sci; 1986; 481():273-86. PubMed ID: 2434012
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Distribution of potassium conductance in mammalian Müller (glial) cells: a comparative study.
    Newman EA
    J Neurosci; 1987 Aug; 7(8):2423-32. PubMed ID: 2441009
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Molecular substrates of potassium spatial buffering in glial cells.
    Kofuji P; Connors NC
    Mol Neurobiol; 2003 Oct; 28(2):195-208. PubMed ID: 14576456
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Clearance of extracellular potassium: evidence for spatial buffering by glial cells in the retina of the drone.
    Gardner-Medwin AR; Coles JA; Tsacopoulos M
    Brain Res; 1981 Mar; 209(2):452-7. PubMed ID: 6261870
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Endfeet of retinal glial cells have higher densities of ion channels that mediate K+ buffering.
    Brew H; Gray PT; Mobbs P; Attwell D
    Nature; 1986 Dec 4-10; 324(6096):466-8. PubMed ID: 2431322
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Membrane physiology of retinal glial (Müller) cells.
    Newman EA
    J Neurosci; 1985 Aug; 5(8):2225-39. PubMed ID: 3874934
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Regulation of potassium levels by Müller cells in the vertebrate retina.
    Newman EA
    Can J Physiol Pharmacol; 1987 May; 65(5):1028-32. PubMed ID: 2441827
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Potassium buffering by Müller cells isolated from the center and periphery of the frog retina.
    Skatchkov SN; Krusek J; Reichenbach A; Orkand RK
    Glia; 1999 Aug; 27(2):171-80. PubMed ID: 10417816
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The activity of a transient potassium current in retinal glial (Müller) cells depends on extracellular calcium.
    Bringmann A; Schopf S; Faude F; Skatchkov SN; Enzmann V; Reichenbach A
    J Hirnforsch; 1999; 39(4):539-50. PubMed ID: 10841453
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Acid efflux from retinal glial cells generated by sodium bicarbonate cotransport.
    Newman EA
    J Neurosci; 1996 Jan; 16(1):159-68. PubMed ID: 8613782
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Calcium waves in dissociated retinal glial (Müller) cells are evoked by release of calcium from intracellular stores.
    Keirstead SA; Miller RF
    Glia; 1995 May; 14(1):14-22. PubMed ID: 7615342
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Voltage-dependent calcium and potassium channels in retinal glial cells.
    Newman EA
    Nature; 1985 Oct 31-Nov 6; 317(6040):809-11. PubMed ID: 2414667
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Efficient K+ buffering by mammalian retinal glial cells is due to cooperation of specialized ion channels.
    Nilius B; Reichenbach A
    Pflugers Arch; 1988 Jun; 411(6):654-60. PubMed ID: 2457869
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Regional specialization of retinal glial cell membrane.
    Newman EA
    Nature; 1984 May 10-16; 309(5964):155-7. PubMed ID: 6717594
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Extracellular H
    Kreitzer MA; Swygart D; Osborn M; Skinner B; Heer C; Kaufman R; Williams B; Shepherd L; Caringal H; Gongwer M; Tchernookova BK; Malchow RP
    J Neurophysiol; 2017 Dec; 118(6):3132-3143. PubMed ID: 28855292
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Counter-transport of potassium by the glutamate uptake carrier in glial cells isolated from the tiger salamander retina.
    Amato A; Barbour B; Szatkowski M; Attwell D
    J Physiol; 1994 Sep; 479 ( Pt 3)(Pt 3):371-80. PubMed ID: 7837095
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Light-induced potassium fluxes in the skate retina.
    Kline RP; Ripps H; Dowling JE
    Neuroscience; 1985 Jan; 14(1):225-35. PubMed ID: 3974879
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Extracellular K+ activity changes related to electroretinogram components. I. Amphibian (I-type) retinas.
    Dick E; Miller RF
    J Gen Physiol; 1985 Jun; 85(6):885-909. PubMed ID: 3926945
    [TBL] [Abstract][Full Text] [Related]  

  • 20. K+ Channel density increases selectively in the endfoot of retinal glial cells during development of Rana catesbiana.
    Rojas L; Orkand RK
    Glia; 1999 Jan; 25(2):199-203. PubMed ID: 9890634
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.