These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

275 related articles for article (PubMed ID: 6474173)

  • 21. A quantitative analysis of glial cell coupling in the retina of the axolotl (Ambystoma mexicanum).
    Mobbs P; Brew H; Attwell D
    Brain Res; 1988 Sep; 460(2):235-45. PubMed ID: 3224259
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Spatial buffering of potassium by retinal Müller (glial) cells of various morphologies calculated by a model.
    Eberhardt W; Reichenbach A
    Neuroscience; 1987 Aug; 22(2):687-96. PubMed ID: 3670605
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Kir potassium channel subunit expression in retinal glial cells: implications for spatial potassium buffering.
    Kofuji P; Biedermann B; Siddharthan V; Raap M; Iandiev I; Milenkovic I; Thomzig A; Veh RW; Bringmann A; Reichenbach A
    Glia; 2002 Sep; 39(3):292-303. PubMed ID: 12203395
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Failure of potassium siphoning by Müller cells: a new hypothesis of perfluorocarbon liquid-induced retinopathy.
    Winter M; Eberhardt W; Scholz C; Reichenbach A
    Invest Ophthalmol Vis Sci; 2000 Jan; 41(1):256-61. PubMed ID: 10634628
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Potassium conductance in Müller cells of fish.
    Newman EA
    Glia; 1988; 1(4):275-81. PubMed ID: 2467883
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Metabotropic glutamate receptor agonists evoke calcium waves in isolated Müller cells.
    Keirstead SA; Miller RF
    Glia; 1997 Oct; 21(2):194-203. PubMed ID: 9336234
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Potassium channel Kir4.1 macromolecular complex in retinal glial cells.
    Connors NC; Kofuji P
    Glia; 2006 Jan; 53(2):124-31. PubMed ID: 16206160
    [TBL] [Abstract][Full Text] [Related]  

  • 28. ATP-mediated increase in H
    Kreitzer MA; Vredeveld M; Tinner K; Powell AM; Schantz AW; Leininger R; Merillat R; Gongwer MW; Tchernookova BK; Malchow RP
    J Neurophysiol; 2024 Jan; 131(1):124-136. PubMed ID: 38116604
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Electrogenic uptake of glutamate and aspartate into glial cells isolated from the salamander (Ambystoma) retina.
    Barbour B; Brew H; Attwell D
    J Physiol; 1991 May; 436():169-93. PubMed ID: 1676418
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A new framework for assessment of potassium-buffering mechanisms.
    Gardner-Medwin AR
    Ann N Y Acad Sci; 1986; 481():287-302. PubMed ID: 3468861
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Spatial buffering of light-evoked potassium increases by retinal Müller (glial) cells.
    Karwoski CJ; Lu HK; Newman EA
    Science; 1989 May; 244(4904):578-80. PubMed ID: 2785716
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Ionic changes and alterations in the size of the extracellular space during epileptic activity.
    Lux HD; Heinemann U; Dietzel I
    Adv Neurol; 1986; 44():619-39. PubMed ID: 3518349
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Extracellular potassium accumulation in the nervous system.
    Orkand RK
    Fed Proc; 1980 Apr; 39(5):1515-8. PubMed ID: 7364046
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Anoxia-induced extracellular ionic changes in CNS white matter: the role of glial cells.
    Ransom BR; Philbin DM
    Can J Physiol Pharmacol; 1992; 70 Suppl():S181-9. PubMed ID: 1295669
    [TBL] [Abstract][Full Text] [Related]  

  • 35. High potassium selective permeability and extracellular ion regulation in the glial perineurium (blood-brain barrier) of the crayfish.
    Hargittai PT; Butt AM; Lieberman EM
    Neuroscience; 1990; 38(1):163-73. PubMed ID: 2255393
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Sources and sinks of light-evoked delta [K+]o in the vertebrate retina.
    Karwoski CJ; Proenza LM
    Can J Physiol Pharmacol; 1987 May; 65(5):1009-17. PubMed ID: 3304587
    [TBL] [Abstract][Full Text] [Related]  

  • 37. [Studies on potassium transport through glial cell membranes (author's transl)].
    Coles JA; Gardner-Medwin AR; Tsacopoulos M
    Klin Monbl Augenheilkd; 1980 Apr; 176(4):522-3. PubMed ID: 7421023
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Potassium accumulation by the glial membrane pump as revealed by membrane potential recording from isolated rabbit retinal Müller cells.
    Reichenbach A; Nilius B; Eberhardt W
    Neurosci Lett; 1986 Jan; 63(3):280-4. PubMed ID: 2419805
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Is the potassium channel distribution in glial cells optimal for spatial buffering of potassium?
    Brew H; Attwell D
    Biophys J; 1985 Nov; 48(5):843-7. PubMed ID: 2416364
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Neurovascular coupling is not mediated by potassium siphoning from glial cells.
    Metea MR; Kofuji P; Newman EA
    J Neurosci; 2007 Mar; 27(10):2468-71. PubMed ID: 17344384
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.