These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

105 related articles for article (PubMed ID: 647471)

  • 1. Biosynthesis of chloramphenicol. Studies on the origin of the dichloroacetyl moiety.
    Simonsen JN; Paramasigamani K; Vining LC; McInnes AG; Walter JA; Wright JL
    Can J Microbiol; 1978 Feb; 24(2):136-42. PubMed ID: 647471
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Use of carbon-13 in biosynthetic studies: origin of the malonyl coenzyme A incorporated into tetracycline by Streptomyces aureofaciens.
    Wang IK; Vining LC; Walter JA; McInnes AG
    J Antibiot (Tokyo); 1986 Sep; 39(9):1281-7. PubMed ID: 3096928
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Biosynthesis of chloramphenicol. Origin and degradation of the aromatic ring.
    O'Neill WP; Nystrom RF; Rinehart KL; Gottlieb D
    Biochemistry; 1973 Nov; 12(23):4775-84. PubMed ID: 4773855
    [No Abstract]   [Full Text] [Related]  

  • 4. Biosynthesis of chloramphenicol. IV. Incorporation of carbon 14-labled precursors.
    GOTTLIEB D; CARTER HE; ROBBINS PW; BURG RW
    J Bacteriol; 1962 Nov; 84(5):888-95. PubMed ID: 13949488
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Biosynthesis of chloramphenicol in Streptomyces species 3022a. Isotope incorporation experiments with (G-14C) chorismic, (G-14C) prephenic, and (G-14C, 6-3H) shikimic acids.
    Emes A; Floss HG; Lowe DA; Westlake DW; Vining LC
    Can J Microbiol; 1974 Mar; 20(3):347-52. PubMed ID: 4822053
    [No Abstract]   [Full Text] [Related]  

  • 6. Use of 13C in biosynthetic studies. The labelling pattern in tenellin enriched from isotope-labelled acetate, methionine, and phenylalanine.
    Wright JL; Vining LC; McInnes AG; Smith DG; Walter JA
    Can J Biochem; 1977 Jul; 55(7):678-85. PubMed ID: 560900
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Glutamate as the common precursor for the aglycon of the naturally occurring C-nucleoside antibiotics.
    Suhadolnik RJ; Reichenbach NL
    Biochemistry; 1981 Nov; 20(24):7042-6. PubMed ID: 6119109
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Biosynthesis of the avermectins by Streptomyces avermitilis. Incorporation of labeled precursors.
    Schulman MD; Valentino D; Hensens O
    J Antibiot (Tokyo); 1986 Apr; 39(4):541-9. PubMed ID: 3086265
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Biosynthesis of poly(3-hydroxy-alkanoates) in Pseudomonas aeruginosa AO-232 from 13C-labelled acetate and propionate.
    Saito Y; Doi Y
    Int J Biol Macromol; 1993 Oct; 15(5):287-92. PubMed ID: 8251443
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The use of doubly-labeled 13C-acetate in the study of streptolydigin biosynthesis.
    Pearce CJ; Rinehart KL
    J Antibiot (Tokyo); 1983 Nov; 36(11):1536-8. PubMed ID: 6558073
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Regulation of chloramphenicol synthesis in Streptomyces sp. 3022a. Properties of arylamine synthetase, an enzyme involved in antibiotic biosynthesis.
    Jones A; Westlake DW
    Can J Microbiol; 1974 Nov; 20(11):1599-611. PubMed ID: 4373156
    [No Abstract]   [Full Text] [Related]  

  • 12. 13C-NMR evidence for the biosynthetic incorporation of acetate into minimycin and compounds related to Krebs cycle.
    Isono K; Uzawa J
    FEBS Lett; 1977 Aug; 80(1):53-6. PubMed ID: 891969
    [No Abstract]   [Full Text] [Related]  

  • 13. Biosynthesis of bellenamine by Streptomyces nashvillensis using stable isotope labeled compounds.
    Ikeda Y; Naganawa H; Kondo S; Takeuchi T
    J Antibiot (Tokyo); 1992 Dec; 45(12):1919-24. PubMed ID: 1490884
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Origin of carbon atoms of biotin. 13C-NMR studies on biotin biosynthesis in Escherichia coli.
    Ifuku O; Miyaoka H; Koga N; Kishimoto J; Haze S; Wachi Y; Kajiwara M
    Eur J Biochem; 1994 Mar; 220(2):585-91. PubMed ID: 8125118
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of chloramphenicol on its biosynthesis by Streptomyces species 3022a.
    Malik VS; Vining LC
    Can J Microbiol; 1972 Feb; 18(2):137-43. PubMed ID: 5018695
    [No Abstract]   [Full Text] [Related]  

  • 16. Influence of nitrogen source on formation of chloramphenicol in cultures of Streptomyces sp. 3022a.
    Westlake DW; Sala F; McGrath R; Vining LC
    Can J Microbiol; 1968 May; 14(5):587-93. PubMed ID: 5665980
    [No Abstract]   [Full Text] [Related]  

  • 17. Chloramphenicol biosynthesis: the structure of CmlS, a flavin-dependent halogenase showing a covalent flavin-aspartate bond.
    Podzelinska K; Latimer R; Bhattacharya A; Vining LC; Zechel DL; Jia Z
    J Mol Biol; 2010 Mar; 397(1):316-31. PubMed ID: 20080101
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Biosynthesis of lasalocid. I. Incorporation of 13C and 14C labelled substrates into lasalocid A.
    Westley JW; Evans RH; Harvey G; Pitcher RG; Pruess DL
    J Antibiot (Tokyo); 1974 Apr; 27(4):288-97. PubMed ID: 4850784
    [No Abstract]   [Full Text] [Related]  

  • 19. Accumulation of intracellular carbon reserves in relation to chloramphenicol biosynthesis by Streptomyces venezuelae.
    Ranade N; Vining LC
    Can J Microbiol; 1993 Apr; 39(4):377-83. PubMed ID: 8500009
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Biosynthesis of the macrolide antibiotic chlorothricin: basic building blocks.
    Holzbach R; Pape H; Hook D; Kreutzer EF; Chang C; Floss HG
    Biochemistry; 1978 Feb; 17(3):556-60. PubMed ID: 620008
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.