BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

111 related articles for article (PubMed ID: 647477)

  • 1. Biosynthesis of chloramphenicol in Streptomyces sp. 3022a. Properties of an aminotransferase accepting p-aminophenylalanine as a substrate.
    Jones A; Francis MM; Vining LC
    Can J Microbiol; 1978 Mar; 24(3):238-44. PubMed ID: 647477
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Biosynthesis of chloramphenicol in Streptomyces sp. 3022a. Identification of p-amino-L-phenylalanine as a product from the action of arylamine synthetase on chorismic acid.
    Jones A; Vining LC
    Can J Microbiol; 1976 Feb; 22(2):237-44. PubMed ID: 4210
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Biosynthesis of chloramphenicol in Streptomyces species 3022a: the nature of the arylamine synthetase system.
    Francis MM; Westlake DW
    Can J Microbiol; 1979 Dec; 25(12):1408-15. PubMed ID: 583399
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Regulation of chloramphenicol synthesis in Streptomyces sp. 3022a. Properties of arylamine synthetase, an enzyme involved in antibiotic biosynthesis.
    Jones A; Westlake DW
    Can J Microbiol; 1974 Nov; 20(11):1599-611. PubMed ID: 4373156
    [No Abstract]   [Full Text] [Related]  

  • 5. Regulation of chloramphenicol synthesis in Streptomyces sp. 3022a. Branch-point enzymes of the shikimic acid pathway.
    Lowe DA; Westlake DW
    Can J Biochem; 1972 Oct; 50(10):1064-73. PubMed ID: 5084351
    [No Abstract]   [Full Text] [Related]  

  • 6. Regulation of chloramphenicol synthesis in Streptomyces sp. 3022a. 3-Deoxy-D-arabino-heptulosonate 7-phosphate synthetase.
    Lowe DA; Westlake DW
    Can J Biochem; 1971 Apr; 49(4):448-55. PubMed ID: 5552828
    [No Abstract]   [Full Text] [Related]  

  • 7. Biosynthesis of chloramphenicol. II. p-Aminophenylalanine as a precursor of the p-nitrophenylserinol moiety.
    Siddiqueullah M; McGrath R; Vining LC
    Can J Biochem; 1967 Dec; 45(12):1881-9. PubMed ID: 4295530
    [No Abstract]   [Full Text] [Related]  

  • 8. Influence of nitrogen source on formation of chloramphenicol in cultures of Streptomyces sp. 3022a.
    Westlake DW; Sala F; McGrath R; Vining LC
    Can J Microbiol; 1968 May; 14(5):587-93. PubMed ID: 5665980
    [No Abstract]   [Full Text] [Related]  

  • 9. Biosynthesis of p-aminophenylalanine: part of a general scheme for the biosynthesis of chorisimic acid derivatives.
    Dardenne GA; Larsen PO; Wieczorkowska E
    Biochim Biophys Acta; 1975 Feb; 381(2):416-23. PubMed ID: 1120153
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A family of diiron monooxygenases catalyzing amino acid beta-hydroxylation in antibiotic biosynthesis.
    Makris TM; Chakrabarti M; Münck E; Lipscomb JD
    Proc Natl Acad Sci U S A; 2010 Aug; 107(35):15391-6. PubMed ID: 20713732
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Purification, characterization and identification of rat liver histidine-pyruvate aminotransferase isoenzymes.
    Noguchi T; Okuno E; Minatogawa Y; Kido R
    Biochem J; 1976 Apr; 155(1):107-15. PubMed ID: 938469
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Conversion of chloramphenicol degradation products by tyrosine aminotransferase from Flavobacteria.
    Beschle HG; Süssmuth R; Lingens F
    Hoppe Seylers Z Physiol Chem; 1982 Apr; 363(4):439-44. PubMed ID: 6122637
    [TBL] [Abstract][Full Text] [Related]  

  • 13. p-Aminophenylalanine and threo-p-aminophenylserine; specific precursors of chloramphenicol.
    McGrath R; Siddiqueullah M; Vining LC; Sala F; Westlake DW
    Biochem Biophys Res Commun; 1967 Nov; 29(4):576-81. PubMed ID: 16496538
    [No Abstract]   [Full Text] [Related]  

  • 14. Identity of kynurenine: pyruvate aminotransferase with histidine: pyruvate aminotransferase.
    Noguchi T; Kido R
    Hoppe Seylers Z Physiol Chem; 1976 May; 357(5):649-56. PubMed ID: 9352
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Metabolites of a blocked chloramphenicol producer.
    Lewis EA; Adamek TL; Vining LC; White RL
    J Nat Prod; 2003 Jan; 66(1):62-6. PubMed ID: 12542347
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Biosynthesis of chloramphenicol in Streptomyces species 3022a. Isotope incorporation experiments with (G-14C) chorismic, (G-14C) prephenic, and (G-14C, 6-3H) shikimic acids.
    Emes A; Floss HG; Lowe DA; Westlake DW; Vining LC
    Can J Microbiol; 1974 Mar; 20(3):347-52. PubMed ID: 4822053
    [No Abstract]   [Full Text] [Related]  

  • 17. Purification and properties of the aromatic amino acid aminotransferase from gramicidin S-producing Bacillus brevis.
    Kanda M; Hori K; Kurotsu T; Miura S; Saito Y
    J Biochem; 1987 Apr; 101(4):871-8. PubMed ID: 2440856
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Purification and properties of two aromatic aminotransferases in Bacillus subtilis.
    Weigent DA; Nester EW
    J Biol Chem; 1976 Nov; 251(22):6974-80. PubMed ID: 11213
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Purification and characterisation of D-amino acid aminotransferase from Rhizobium japonicum.
    Gosling JP; Fottrell PF
    Biochim Biophys Acta; 1978 Jan; 522(1):84-9. PubMed ID: 620041
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Substrate specificity of the adenylation enzyme SgcC1 involved in the biosynthesis of the enediyne antitumor antibiotic C-1027.
    Van Lanen SG; Lin S; Dorrestein PC; Kelleher NL; Shen B
    J Biol Chem; 2006 Oct; 281(40):29633-40. PubMed ID: 16887797
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.